The application of Federated Learning (FL) is steadily increasing, especially in privacy-aware applications, such as healthcare. However, its applications have been limited by security concerns due to various adversarial attacks, such as poisoning attacks (model and data poisoning). Such attacks attempt to poison the local models and data to manipulate the global models in order to obtain undue benefits and malicious use. Traditional methods of data auditing to mitigate poisoning attacks find their limited applications in FL because the edge devices never share their raw data directly due to privacy concerns, and are globally distributed with no insight into their training data. Thereafter, it is challenging to develop appropriate strategies to address such attacks and minimize their impact on the global model in federated learning. In order to address such challenges in FL, we proposed a novel framework to detect poisoning attacks using deep neural networks and support vector machines, in the form of anomaly without acquiring any direct access or information about the underlying training data of local edge devices. We illustrate and evaluate the proposed framework using different state of art poisoning attacks for two different healthcare applications: Electrocardiograph classification and human activity recognition. Our experimental analysis shows that the proposed method can efficiently detect poisoning attacks and can remove the identified poisoned updated from the global aggregation. Thereafter can increase the performance of the federated global.


翻译:联邦学习联合会(FL)的应用正在稳步增加,特别是在隐私意识的应用方面,如医疗保健等。然而,由于各种对抗性攻击,例如中毒袭击(模型和数据中毒),其应用由于安全方面的关切而受到限制。这种攻击企图毒害当地模型和数据,操纵全球模型,以获取不正当利益和恶意使用。减轻中毒袭击的传统数据审计方法发现,在FL的应用有限,因为边缘装置由于隐私关切从未直接分享其原始数据,而且在全球范围分布,对其培训数据没有洞察力。随后,制定适当战略应对此类袭击并尽量减少其对联邦化学习中全球模型的影响具有挑战性。为了应对FL的此类挑战,我们提议了一个新框架,利用深神经网络和辅助病媒机器来检测中毒袭击,其形式为异常,而没有直接获得任何关于当地边缘装置基本培训数据的信息。我们用电心学分类和人类活动认识两种不同的保健应用的不同状态来说明和评价拟议框架。我们进行实验分析后显示,拟议的方法能够有效检测中毒袭击,并消除全球已查明的毒性。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月9日
Arxiv
0+阅读 · 2022年9月8日
Anomalous Instance Detection in Deep Learning: A Survey
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员