Motivated by the Beck-Fiala conjecture, we study the discrepancy problem in two related models of random hypergraphs on $n$ vertices and $m$ edges. In the first (edge-independent) model, a random hypergraph $H_1$ is constructed by fixing a parameter $p$ and allowing each of the $n$ vertices to join each of the $m$ edges independently with probability $p$. In the parameter range in which $pn \rightarrow \infty$ and $pm \rightarrow \infty$, we show that with high probability (w.h.p.) $H_1$ has discrepancy at least $\Omega(2^{-n/m} \sqrt{pn})$ when $m = O(n)$, and at least $\Omega(\sqrt{pn \log\gamma })$ when $m \gg n$, where $\gamma = \min\{ m/n, pn\}$. In the second (edge-dependent) model, $d$ is fixed and each vertex of $H_2$ independently joins exactly $d$ edges uniformly at random. We obtain analogous results for this model by generalizing the techniques used for the edge-independent model with $p=d/m$. Namely, for $d \rightarrow \infty$ and $dn/m \rightarrow \infty$, we prove that w.h.p. $H_{2}$ has discrepancy at least $\Omega(2^{-n/m} \sqrt{dn/m})$ when $m = O(n)$, and at least $\Omega(\sqrt{(dn/m) \log\gamma})$ when $m \gg n$, where $\gamma =\min\{m/n, dn/m\}$. Furthermore, we obtain nearly matching asymptotic upper bounds on the discrepancy in both models (when $p=d/m$), in the dense regime of $m \gg n$. Specifically, we apply the partial colouring lemma of Lovett and Meka to show that w.h.p. $H_{1}$ and $H_{2}$ each have discrepancy $O( \sqrt{dn/m} \log(m/n))$, provided $d \rightarrow \infty$, $d n/m \rightarrow \infty$ and $m \gg n$. This result is algorithmic, and together with the work of Bansal and Meka characterizes how the discrepancy of each random hypergraph model transitions from $\Theta(\sqrt{d})$ to $o(\sqrt{d})$ as $m$ varies from $m=\Theta(n)$ to $m \gg n$.


翻译:由 Beck- Fiala 调制成, 我们研究两个相关的模型的差异问题。 在两个相关的模型中, 随机超网对美元( 美元) 美元( 美元) 和美元( 美元) 。 在第一个( 独立) 模型中, 一个随机超网$( 美元) 美元( 1美元) 的构建方式是: 设置一个参数 美元( 美元), 允许美元( 美元) 独立加入每个美元边缘, 概率( 美元) 美元( 美元/ 美元) 。 在参数范围中, 美元/ 美元( 美元) 和 美元( 美元), 美元= 美元( 美元) 美元( 美元/ 美元) 美元( 美元), 美元( 美元/ 美元) 美元( 美元/ 美元) 美元( 美元/ 美元/ 美元( 美元) 美元( 美元/ 美元) 美元( 美元/ 美元/ 美元/ 美元( 美元) 美元/ 美元( 美元=/ 美元) 美元/ 美元/ 美元/ 美元/ 美元/ 美元( 美元) 美元/ 美元/ 美元( 美元/ 美元/ 美元) 美元/ 美元/ 美元/ 美元/ 美元/ 美元) 美元( 美元/ 美元/ 美元/ 美元/ 美元) 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元( 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元) 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
专知会员服务
84+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
已删除
将门创投
5+阅读 · 2017年10月20日
Arxiv
0+阅读 · 2021年4月6日
Arxiv
0+阅读 · 2021年4月4日
Arxiv
0+阅读 · 2021年4月2日
VIP会员
相关VIP内容
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
专知会员服务
84+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
5+阅读 · 2017年10月20日
Top
微信扫码咨询专知VIP会员