Neural language models are known to have a high capacity for memorization of training samples. This may have serious privacy implications when training models on user content such as email correspondence. Differential privacy (DP), a popular choice to train models with privacy guarantees, comes with significant costs in terms of utility degradation and disparate impact on subgroups of users. In this work, we introduce two privacy-preserving regularization methods for training language models that enable joint optimization of utility and privacy through (1) the use of a discriminator and (2) the inclusion of a triplet-loss term. We compare our methods with DP through extensive evaluation. We show the advantages of our regularizers with favorable utility-privacy trade-off, faster training with the ability to tap into existing optimization approaches, and ensuring uniform treatment of under-represented subgroups.


翻译:众所周知,神经语言模式具有高度的记忆能力,对培训样本进行记忆化处理,这在诸如电子邮件通信等用户内容培训模式时可能会对隐私产生严重影响; 差异隐私(DP),一种对具有隐私保障的模型进行培训的流行选择,在公用事业退化和对用户分组的不同影响方面成本巨大; 在这项工作中,我们为培训语言模式引入了两种保护隐私的规范化方法,以便通过(1) 使用歧视者,(2) 包括三重损失术语,联合优化使用和隐私; 我们通过广泛评估,将我们的方法与DP进行比较; 我们展示了我们的规范者的优势,包括有利的公用特权交换,更快的培训,能够利用现有的优化方法,确保代表不足的分组得到统一对待。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2021年3月30日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员