In this paper, we propose a high order unfitted finite element method for solving time-harmonic Maxwell interface problems. The unfitted finite element method is based on a mixed formulation in the discontinuous Galerkin framework on a Cartesian mesh with possible hanging nodes. The $H^2$ regularity of the solution to Maxwell interface problems with $C^2$ interfaces in each subdomain is proved. Practical interface resolving mesh conditions are introduced under which the hp inverse estimates on three-dimensional curved domains are proved. Stability and hp a priori error estimate of the unfitted finite element method are proved. Numerical results are included to illustrate the performance of the method.
翻译:在本文中,我们提出了一种高顺序不适于使用的有限要素方法,用于解决时间-调和 Maxwell 界面问题。不适于使用的有限要素方法基于在卡提斯语网格上的不连续加列金框架的混合配方,该网格上可能有悬吊节点。马克斯韦尔接口问题的解决方案与每个子域的 $C$2 接口的常规性得到了证明。采用了解决网格条件的实用界面,据此可以证明三维弯曲域的反向估计数。证实了不合适的有限要素方法的稳定性和先验误差估计数。纳入了数字结果,以说明该方法的性能。