We study the planted clique problem in which a clique of size k is planted in an Erd\H{o}s-R\'enyi graph G(n, 1/2), and one is interested in either detecting or recovering this planted clique. This problem is interesting because it is widely believed to show a statistical-computational gap at clique size k=sqrt{n}, and has emerged as the prototypical problem with such a gap from which average-case hardness of other statistical problems can be deduced. It also displays a tight computational connection between the detection and recovery variants, unlike other problems of a similar nature. This wide investigation into the computational complexity of the planted clique problem has, however, mostly focused on its time complexity. In this work, we ask- Do the statistical-computational phenomena that make the planted clique an interesting problem also hold when we use `space efficiency' as our notion of computational efficiency? It is relatively easy to show that a positive answer to this question depends on the existence of a O(log n) space algorithm that can recover planted cliques of size k = Omega(sqrt{n}). Our main result comes very close to designing such an algorithm. We show that for k=Omega(sqrt{n}), the recovery problem can be solved in O((log*{n}-log*{k/sqrt{n}}) log n) bits of space. 1. If k = omega(sqrt{n}log^{(l)}n) for any constant integer l > 0, the space usage is O(log n) bits. 2.If k = Theta(sqrt{n}), the space usage is O(log*{n} log n) bits. Our result suggests that there does exist an O(log n) space algorithm to recover cliques of size k = Omega(sqrt{n}), since we come very close to achieving such parameters. This provides evidence that the statistical-computational phenomena that (conjecturally) hold for planted clique time complexity also (conjecturally) hold for space complexity.


翻译:我们研究的是植入的球状问题,在这个问题中, k 大小的球状被植入到 Erd\ H{ o}s- R\'eny polgage G(n, 1/2), 一个人对探测或恢复这个刻设的球状问题感兴趣。 这个问题之所以有趣,是因为人们普遍认为它显示了在 cloque 大小 k= sqt{n} 的统计- 剖析差距, 并且已经成为一个典型的问题, 由此可以推断出其他统计问题的平均大小的硬度。 它也显示了探测和回收变异之间的紧密计算联系, 不同于类似性质的其它问题。 然而, 对刻设的球状问题的计算复杂性的这种广泛调查主要侧重于时间复杂性。 在这项工作中, 当我们使用“ 空间效率” 作为计算效率的概念时, k 相对容易显示这个问题的正确答案取决于O(log n) 的近距离的内值, krlog=我们的主要算结果, 我们的内径= kqraltal disals。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
35+阅读 · 2020年11月29日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
已删除
将门创投
4+阅读 · 2018年5月31日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月12日
Arxiv
0+阅读 · 2021年1月10日
Arxiv
0+阅读 · 2021年1月10日
Arxiv
0+阅读 · 2021年1月7日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
35+阅读 · 2020年11月29日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
已删除
将门创投
4+阅读 · 2018年5月31日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员