This paper studies structure detection problems in high temperature ferromagnetic (positive interaction only) Ising models. The goal is to distinguish whether the underlying graph is empty, i.e., the model consists of independent Rademacher variables, versus the alternative that the underlying graph contains a subgraph of a certain structure. We give matching upper and lower minimax bounds under which testing this problem is possible/impossible respectively. Our results reveal that a key quantity called graph arboricity drives the testability of the problem. On the computational front, under a conjecture of the computational hardness of sparse principal component analysis, we prove that, unless the signal is strong enough, there are no polynomial time tests which are capable of testing this problem. In order to prove this result we exhibit a way to give sharp inequalities for the even moments of sums of i.i.d. Rademacher random variables which may be of independent interest.
翻译:本文研究结构了高温铁磁( 阳性互动) 离子模型的检测问题。 目标是区分底图是否为空, 即模型由独立的 Rademacher 变量组成, 与底图包含特定结构的子图的替代数据。 我们给出了匹配的上下小微轴界限, 分别测试这一问题的可能性/ 可能性。 我们的结果表明, 关键数量叫做 图形过硬性, 驱动问题的测试。 在计算前方, 在计算主元件稀疏分析的计算硬度的推测下, 我们证明, 除非信号足够强, 否则, 没有多元时间测试能够测试这一问题 。 为了证明这个结果, 我们展示了一种方法, 在 i. d. d. Rademacher 随机变数的偶数时, 给予剧烈的不平等, 这可能是独立感兴趣的 。