Proximity full-text search is commonly implemented in contemporary full-text search systems. Let us assume that the search query is a list of words. It is natural to consider a document as relevant if the queried words are near each other in the document. The proximity factor is even more significant for the case where the query consists of frequently occurring words. Proximity full-text search requires the storage of information for every occurrence in documents of every word that the user can search. For every occurrence of every word in a document, we employ additional indexes to store information about nearby words, that is, the words that occur in the document at distances from the given word of less than or equal to the MaxDistance parameter. We showed in previous works that these indexes can be used to improve the average query execution time by up to 130 times for queries that consist of words occurring with high-frequency. In this paper, we consider how both the search performance and the search quality depend on the value of MaxDistance and other parameters. Well-known GOV2 text collection is used in the experiments for reproducibility of the results. We propose a new index schema after the analysis of the results of the experiments. This is a pre-print of a contribution published in Supplementary Proceedings of the XXII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2020), Voronezh, Russia, October 13-16, 2020, P. 336-350, published by CEUR Workshop Proceedings. The final authenticated version is available online at: http://ceur-ws.org/Vol-2790/


翻译:完整文本搜索通常在当代全文搜索系统中进行。 让我们假设搜索查询是一个单词列表。 如果文件中的查询单词彼此接近, 自然会认为文件是相关的文件。 对于查询由经常出现的单词组成的情况来说, 接近系数甚至更为重要 。 完整文本搜索要求将每个事件的信息储存在用户可以搜索的每个单词的文件中。 对于每个单词在文件中的每一个发生, 我们使用额外的索引来存储关于附近单词的信息, 即文件中与给定单词的距离比Max Distance差或相等的单词。 我们曾在先前的著作中显示, 这些指数可以用来将平均查询执行时间提高到130次, 包括高频率的单词。 在本文中, 我们考虑搜索业绩和搜索质量如何取决于 Max Dislentance 和其他参数的价值。 众所周知的 OV2 文本收藏用于测试结果的实验, 即文件中出现的比给 Max Drial- drial 参数差值值值值值值 值值值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 度 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
123+阅读 · 2020年9月8日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月8日
The Evolved Transformer
Arxiv
5+阅读 · 2019年1月30日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员