We devise a machine learning technique to solve the general problem of inferring network links that have time-delays. The goal is to do this purely from time-series data of the network nodal states. This task has applications in fields ranging from applied physics and engineering to neuroscience and biology. To achieve this, we first train a type of machine learning system known as reservoir computing to mimic the dynamics of the unknown network. We formulate and test a technique that uses the trained parameters of the reservoir system output layer to deduce an estimate of the unknown network structure. Our technique, by its nature, is non-invasive, but is motivated by the widely-used invasive network inference method whereby the responses to active perturbations applied to the network are observed and employed to infer network links (e.g., knocking down genes to infer gene regulatory networks). We test this technique on experimental and simulated data from delay-coupled opto-electronic oscillator networks. We show that the technique often yields very good results particularly if the system does not exhibit synchrony. We also find that the presence of dynamical noise can strikingly enhance the accuracy and ability of our technique, especially in networks that exhibit synchrony.
翻译:我们设计了一种机器学习技术,以解决计算具有时间间隔的网络链接的一般性问题。我们的目标是纯粹从网络节点状态的时间序列数据中进行这项工作。这项任务在应用物理和工程学、神经科学和生物学等领域都有应用。为了实现这一点,我们首先训练一种称为储油层的机器学习系统,以模拟未知网络的动态。我们制定和试验一种技术,利用储油层系统输出层经过训练的参数来推断出未知网络结构的估计数。我们的技术,就其性质而言,是非侵入性的,但受到广泛使用的入侵网络推断方法的驱动。根据这种方法,对应用于网络的积极扰动反应的反应被观察并用来推断网络链接(例如,击落基因以推断基因调节网络)。我们用延迟组合的多功能电子振荡器网络的实验和模拟数据测试这一技术。我们显示,该技术往往产生非常良好的结果,特别是如果系统不同步的话。我们还发现,动态噪音的存在可以惊人地增强我们技术的精确性和展示能力。