With the rapid development of Natural Language Processing (NLP) technologies, text steganography methods have been significantly innovated recently, which poses a great threat to cybersecurity. In this paper, we propose a novel attentional LSTM-CNN model to tackle the text steganalysis problem. The proposed method firstly maps words into semantic space for better exploitation of the semantic feature in texts and then utilizes a combination of Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) recurrent neural networks to capture both local and long-distance contextual information in steganography texts. In addition, we apply attention mechanism to recognize and attend to important clues within suspicious sentences. After merge feature clues from Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), we use a softmax layer to categorize the input text as cover or stego. Experiments showed that our model can achieve the state-of-art result in the text steganalysis task.


翻译:随着自然语言处理(NLP)技术的迅速发展,最近对文本扫描方法进行了重大创新,这对网络安全构成了巨大的威胁。在本文中,我们提出了一个新的关注LSTM-CNN模型,以解决文本分层分析问题。拟议方法首先将单词映射到语义空间,以便更好地利用文本中的语义特征,然后利用进化神经网络(CNNs)和长短期内存(LSTM)的经常性神经网络(LSTM)的组合,以捕捉语义学文本中的本地和长距离背景信息。此外,我们运用关注机制识别和处理可疑句子中的重要线索。在将进化神经网络(CNNS)和常规神经网络(RNNS)的特征线索合并后,我们用软式马克斯层将输入文本分类为封面或外壳。实验显示,我们的模型可以在文本分层分析任务中取得最新结果。

0
下载
关闭预览

相关内容

专知会员服务
24+阅读 · 2021年8月22日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
102+阅读 · 2020年8月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
31+阅读 · 2018年11月13日
Arxiv
21+阅读 · 2018年5月23日
VIP会员
相关VIP内容
专知会员服务
24+阅读 · 2021年8月22日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
102+阅读 · 2020年8月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员