This paper presents a novel method for restoring digital videos via a Deep Plug-and-Play (PnP) approach. Under a Bayesian formalism, the method consists in using a deep convolutional denoising network in place of the proximal operator of the prior in an alternating optimization scheme. We distinguish ourselves from prior PnP work by directly applying that method to restore a digital video from a degraded video observation. This way, a network trained once for denoising can be repurposed for other video restoration tasks. Our experiments in video deblurring, super-resolution, and interpolation of random missing pixels all show a clear benefit to using a network specifically designed for video denoising, as it yields better restoration performance and better temporal stability than a single image network with similar denoising performance using the same PnP formulation. Moreover, our method compares favorably to applying a different state-of-the-art PnP scheme separately on each frame of the sequence. This opens new perspectives in the field of video restoration.
翻译:本文展示了一种通过深点和盘点( PnP) 方法恢复数码视频的新颖方法。 在巴伊西亚的正规主义下, 方法包括使用一个深度的革命分解网络, 取代前一位最接近的操作者, 以交替优化方案。 我们通过直接应用这种方法从退化的视频观测中恢复数字视频, 把自己与先前的 PnP 工作区别开来。 这样, 受过一次拆卸训练的网络可以重新用于其他视频恢复任务。 我们在视频分解、 超级解析和随机缺失像素的内插实验都展示了使用专为视频分解设计的网络的明显好处, 因为它能产生更好的恢复性能和更好的时间稳定性, 而不是使用同一 PnP 配方的类似分解的单一图像网络。 此外, 我们的方法比对每个序列框架分别应用不同的状态艺术 PnP 计划要好。 这在视频恢复领域打开了新的视角 。