Probabilistic shaping (PS) has been widely studied and applied to optical fiber communications. The encoder of PS expends the number of bit slots and controls the probability distribution of channel input symbols. Not only studies focused on PS but also most works on optical fiber communications have assumed source uniformity (i.e. equal probability of marks and spaces) so far. On the other hand, the source information is in general nonuniform, unless bit-scrambling or other source coding techniques to balance the bit probability is performed. Interestingly,one can exploit the source nonuniformity to reduce the entropy of the channel input symbols with the PS encoder, which leads to smaller required signal-to-noise ratio at a given input logic rate. This benefit is equivalent to a combination of data compression and PS, and thus we call this technique compressed shaping. In this work, we explain its theoretical background in detail, and verify the concept by both numerical simulation and a field programmable gate array (FPGA) implementation of such a system. In particular, we find that compressed shaping can reduce power consumption in forward error correction decoding by up to 90% in nonuniform source cases. The additional hardware resources required for compressed shaping are not significant compared with forward error correction coding, and a real-time back-to-back test is successfully demonstrated.


翻译:概率成像( PS) 已被广泛研究并应用于光纤通信。 PS 的编码器花费了位位槽数量并控制了频道输入符号的概率分布。 不仅以 PS 为重点研究, 而且大部分光纤通信的作品都假定了源的统一性( 与标记和空格的概率相等 ) 。 另一方面, 源信息一般而言不统一, 除非执行比特拼动或其他用于平衡比特概率的源编码技术。 有趣的是, 一个人可以利用源的不统一性来减少频道输入符号与 PS 编码器的宽度, 以给定输入逻辑速率降低所需的信号对噪音比。 这个好处相当于数据压缩和 PS 的组合, 因此我们称之为这种技术压缩形状。 在这项工作中, 我们详细解释其理论背景, 并通过数字模拟和外地可编程门阵列来验证这个概念。 特别是, 我们发现, 压缩电源的节制能消耗量减少在前向错误中以特定输入的信号比重比重的硬度比重修正, 向90 。 向前校正法要求的硬度校正法是非前校正法到前校正法到不要求的试验到前制到前置到前置到前置的试验到前置的 。

0
下载
关闭预览

相关内容

【NeurIPS2020】基于能量的分布外检测
专知会员服务
13+阅读 · 2020年10月10日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
深度神经网络模型压缩与加速综述
专知会员服务
128+阅读 · 2019年10月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
trape 一种识别工具
黑白之道
4+阅读 · 2019年5月2日
已删除
将门创投
6+阅读 · 2019年4月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
理解情感 :从 Keras 移植到 pyTorch
机器学习研究会
6+阅读 · 2017年10月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
0+阅读 · 2021年3月31日
Arxiv
0+阅读 · 2021年3月29日
Model-Free Learning of Safe yet Effective Controllers
Arxiv
0+阅读 · 2021年3月26日
VIP会员
相关VIP内容
【NeurIPS2020】基于能量的分布外检测
专知会员服务
13+阅读 · 2020年10月10日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
深度神经网络模型压缩与加速综述
专知会员服务
128+阅读 · 2019年10月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
trape 一种识别工具
黑白之道
4+阅读 · 2019年5月2日
已删除
将门创投
6+阅读 · 2019年4月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
理解情感 :从 Keras 移植到 pyTorch
机器学习研究会
6+阅读 · 2017年10月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员