Detecting out-of-distribution (OOD) and adversarial samples is essential when deploying classification models in real-world applications. We introduce Channel Mean Discrepancy (CMD), a model-agnostic distance metric for evaluating the statistics of features extracted by classification models, inspired by integral probability metrics. CMD compares the feature statistics of incoming samples against feature statistics estimated from previously seen training samples with minimal overhead. We experimentally demonstrate that CMD magnitude is significantly smaller for legitimate samples than for OOD and adversarial samples. We propose a simple method to reliably differentiate between legitimate samples from OOD and adversarial samples using CMD, requiring only a single forward pass on a pre-trained classification model per sample. We further demonstrate how to achieve single image detection by using a lightweight model for channel sensitivity tuning, an improvement on other statistical detection methods. Preliminary results show that our simple yet effective method outperforms several state-of-the-art approaches to detecting OOD and adversarial samples across various datasets and attack methods with high efficiency and generalizability.


翻译:在实际应用中,在应用分类模型时,检测分布区外样本和对抗性样本至关重要。我们引入了频道平均差异模型(CMD),这是根据整体概率指标评估分类模型所提取特征的统计的模型-不可知距离测量标准。CMD比较了从以前看到的培训样本中采集的样本的特征统计数据,而以前曾看到的培训样本中估计的特征统计数据的间接费用。我们实验性地证明,合法样本的CMD数量大大小于OOD和对抗性样本的浓度。我们提出了一个可靠地区分合法样本与使用CMD的 OOD和对抗性样本的样本的简单方法,只需要在经过预先训练的分类模型中有一个前方通行证。我们进一步展示了如何通过使用轻量的频道敏感度调节模型实现单一图像检测的方法,这是对其他统计检测方法的改进。初步结果表明,我们简单而有效的方法超越了在各种数据集和袭击方法中探测OD和对抗性样本的几种最先进的方法。我们提出了一个简单的方法。我们提出了一种可靠地区分合法样本和对抗性样本的简单方法。我们提出了一种方法。我们进一步展示了如何通过高效和普遍使用一种方法。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
91+阅读 · 2021年6月3日
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
专知会员服务
39+阅读 · 2020年9月6日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
50+阅读 · 2020年5月16日
专知会员服务
109+阅读 · 2020年3月12日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Conditional Batch Normalization 详解
极市平台
4+阅读 · 2019年4月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
91+阅读 · 2021年6月3日
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
专知会员服务
39+阅读 · 2020年9月6日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
50+阅读 · 2020年5月16日
专知会员服务
109+阅读 · 2020年3月12日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Conditional Batch Normalization 详解
极市平台
4+阅读 · 2019年4月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员