This paper highlights the trends in the field of predictive maintenance with the use of machine learning. With the continuous development of the Fourth Industrial Revolution, through IoT, the technologies that use artificial intelligence are evolving. As a result, industries have been using these technologies to optimize their production. Through scientific research conducted for this paper, conclusions were drawn about the trends in Predictive Maintenance applications with the use of machine learning bridging Artificial Intelligence and IoT. These trends are related to the types of industries in which Predictive Maintenance was applied, the models of artificial intelligence were implemented, mainly of machine learning and the types of sensors that are applied through the IoT to the applications. Six sectors were presented and the production sector was dominant as it accounted for 54.54% of total publications. In terms of artificial intelligence models, the most prevalent among ten were the Artificial Neural Networks, Support Vector Machine and Random Forest with 27.84%, 17.72% and 13.92% respectively. Finally, twelve categories of sensors emerged, of which the most widely used were the sensors of temperature and vibration with percentages of 60.71% and 46.42% correspondingly.


翻译:本文着重介绍了利用机器学习进行预测性维护的趋势。随着第四次工业革命的持续发展,通过IoT, 使用人工智能的技术正在不断发展。因此,各行业一直在利用这些技术优化其生产。通过为本文件进行的科学研究,就利用机器学习连接人工智能和IoT进行预测性维护应用的趋势得出结论。这些趋势与应用预测性维护的行业类型有关,实施了人工智能模型,主要是机器学习模型和通过IoT应用的传感器类型。介绍了六个部门,生产部门占了全部出版物的54.54%。在人工智能模型中,10个部门中最普遍的是人工神经网络、支持矢量机器和随机森林,分别占27.84%、17.72%和13.92%。最后,出现了12类传感器,其中最广泛使用的是温度和振动传感器,占60.71%和46.42%。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
IBM《人工智能白皮书》(2019版),12页PDF,IBM编
专知会员服务
20+阅读 · 2019年11月8日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
10+阅读 · 2020年11月26日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员