The focus of this thesis is broadly on the alignment of lexicographical data, particularly dictionaries. In order to tackle some of the challenges in this field, two main tasks of word sense alignment and translation inference are addressed. The first task aims to find an optimal alignment given the sense definitions of a headword in two different monolingual dictionaries. This is a challenging task, especially due to differences in sense granularity, coverage and description in two resources. After describing the characteristics of various lexical semantic resources, we introduce a benchmark containing 17 datasets of 15 languages where monolingual word senses and definitions are manually annotated across different resources by experts. In the creation of the benchmark, lexicographers' knowledge is incorporated through the annotations where a semantic relation, namely exact, narrower, broader, related or none, is selected for each sense pair. This benchmark can be used for evaluation purposes of word-sense alignment systems. The performance of a few alignment techniques based on textual and non-textual semantic similarity detection and semantic relation induction is evaluated using the benchmark. Finally, we extend this work to translation inference where translation pairs are induced to generate bilingual lexicons in an unsupervised way using various approaches based on graph analysis. This task is of particular interest for the creation of lexicographical resources for less-resourced and under-represented languages and also, assists in increasing coverage of the existing resources. From a practical point of view, the techniques and methods that are developed in this thesis are implemented within a tool that can facilitate the alignment task.


翻译:该论文的焦点大致上是地名录数据的统一,特别是字典。为了应对该领域的一些挑战,将处理文字感知和翻译推导的两个主要任务。第一个任务旨在根据两个不同的单语词典中首词定义的感知,找到最佳的对齐。这是一项具有挑战性的任务,特别是由于两种资源在语言颗粒性、覆盖面和描述上的差异。在描述各种词汇语义资源的特点之后,我们引入了一个包含15种语言的17个数据集的基准,其中单语言词感应和定义在专家的不同资源中手工注释。在创建基准时,地名录学家的知识通过说明纳入其中,其中为每种语义选择了语义关系,即精确、狭小、宽广、相关或无。这一基准可用于语言感知调系统的评价目的。在描述各种文字和非文字性语义相似性探测和语义关系感应征的功能时,使用基准来评估的对15种语言的对齐性识别和语义关系。在创建基准中,我们将这项工作的范围扩大到了各种语言的翻译方法,在以内部,在这种语言感化分析中,在使用这种语言感化分析中使用了一种基于不同语言的翻译方式,这种语言的翻译方法,在计算中,可以产生一种不甚深地名录。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
专知会员服务
40+阅读 · 2020年9月6日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员