For some problems, humans may not be able to accurately judge the goodness of AI-proposed solutions. Irving et al. (2018) propose that in such cases, we may use a debate between two AI systems to amplify the problem-solving capabilities of a human judge. We introduce a mathematical framework that can model debates of this type and propose that the quality of debate designs should be measured by the accuracy of the most persuasive answer. We describe a simple instance of the debate framework called feature debate and analyze the degree to which such debates track the truth. We argue that despite being very simple, feature debates nonetheless capture many aspects of practical debates such as the incentives to confuse the judge or stall to prevent losing. We then outline how these models should be generalized to analyze a wider range of debate phenomena.


翻译:对于某些问题,人类可能无法准确判断AI提出的解决办法的好坏。Irving等人(2018年)建议,在这种情况下,我们可以利用两个AI系统之间的辩论来扩大人类法官解决问题的能力。我们引入一个数学框架,可以模拟这种类型的辩论,并建议辩论设计的质量应以最有说服力的答案的准确性来衡量。我们描述了一个称为特征辩论的辩论框架的简单例子,并分析了这种辩论跟踪真相的程度。我们争辩说,尽管辩论非常简单,但特色辩论仍然能够捕捉实际辩论的许多方面,例如混淆法官或拖延防止失败的动机。我们然后概述这些模式应如何被普遍化,以分析更广泛的辩论现象。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
【论文】结构GANs,Structured GANs,
专知会员服务
15+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
24+阅读 · 2020年3月11日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Compositional Generalization in Image Captioning
Arxiv
3+阅读 · 2019年9月16日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
【论文】结构GANs,Structured GANs,
专知会员服务
15+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Arxiv
24+阅读 · 2020年3月11日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Compositional Generalization in Image Captioning
Arxiv
3+阅读 · 2019年9月16日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
6+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员