Arbitrary pattern formation (\textsc{Apf}) is well studied problem in swarm robotics. The problem has been considered in two different settings so far; one is in plane and another is in infinite grid. This work deals the problem in infinite rectangular grid setting. The previous works in literature dealing with \textsc{Apf} problem in infinite grid had a fundamental issue. These deterministic algorithms use a lot space of the grid to solve the problem mainly because of maintaining asymmetry of the configuration or to avoid collision. These solution techniques can not be useful if there is a space constrain in the application field. In this work, we consider luminous robots (with one light that can take two colors) in order to avoid symmetry, but we carefully designed a deterministic algorithm which solves the \textsc{Apf} problem using minimal required space in the grid. The robots are autonomous, identical, anonymous and they operate in Look-Compute-Move cycles under a fully asynchronous scheduler. The \textsc{Apf} algorithm proposed in [WALCOM'2019] by Bose et al. can be modified using luminous robots so that it uses minimal space but that algorithm is not move optimal. The algorithm proposed in this paper not only uses minimal space but also asymptotically move optimal. The algorithm proposed in this work is designed for infinite rectangular grid but it can be easily modified to work in a finite grid as well.
翻译:任意模式形成 (\ textsc{ Apf}) 是在群温机器人中研究过的问题 。 这个问题在迄今为止的两个不同的设置中得到了考虑; 一个在平面上, 另一个在无限的网格中。 这项工作在无限的矩形网格设置中处理问题 。 在无限网格中处理\ textsc{ Apf} 问题的文献上以前的工作有一个根本问题。 这些确定性算法在网格中使用大量空间来解决问题。 这些确定性算法主要因为保持配置的不对称性或避免碰撞而使用网格中的许多空间。 如果应用程序字段中存在空间限制, 这些解决方案技术可能不会有用。 在这项工作中,我们考虑光亮的机器人( 与一个可以使用两种颜色的光亮的灯光), 但是我们仔细设计了一种确定性算法, 解决网格中所需的最小空间空间问题。 机器人是自主的、 相同、 匿名的, 并且只能在一个完全同步的平流的平流系统下运行。 在这项工作中, 而不是用最小的平流的平流的平流的平流算法 。