The objective of this paper is few-shot object detection (FSOD) -- the task of expanding an object detector for a new category given only a few instances for training. We introduce a simple pseudo-labelling method to source high-quality pseudo-annotations from the training set, for each new category, vastly increasing the number of training instances and reducing class imbalance; our method finds previously unlabelled instances. Na\"ively training with model predictions yields sub-optimal performance; we present two novel methods to improve the precision of the pseudo-labelling process: first, we introduce a verification technique to remove candidate detections with incorrect class labels; second, we train a specialised model to correct poor quality bounding boxes. After these two novel steps, we obtain a large set of high-quality pseudo-annotations that allow our final detector to be trained end-to-end. Additionally, we demonstrate our method maintains base class performance, and the utility of simple augmentations in FSOD. While benchmarking on PASCAL VOC and MS-COCO, our method achieves state-of-the-art or second-best performance compared to existing approaches across all number of shots.
翻译:本文的目标是微小的物体探测(FSOD) -- -- 扩大新类别物体探测器的任务 -- -- 仅提供少数培训实例,新类别的任务就是扩大物体探测器;我们采用简单的假标签方法,从每类新培训中获取高质量的假说明,大大增加培训次数,减少课堂不平衡;我们的方法以前没有标记;模型预测的“光学”培训产生亚优性性性能;我们提出了两种提高假标签过程精确度的新方法:第一,我们采用核查技术,删除不正确的类标签候选人检测;第二,我们培训一种专门模型,纠正质量差的捆绑箱。在这两个新步骤之后,我们获得了一套高质量的假说明,使我们的最后探测器能够接受端到端培训。此外,我们展示了我们的方法保持了基础级性能,以及在FSOD中简单增强功能的效用。在对PACAL VOC和MS-COCO进行基准测试时,我们的方法达到了最新或第二位性能,与现有各种镜头相比,我们的方法达到了最新或第二位性能。