Accompanying rapid industrialization, humans are suffering from serious air pollution problems. The demand for air quality prediction is becoming more and more important to the government's policy-making and people's daily life. In this paper, We propose GreenEyes -- a deep neural network model, which consists of a WaveNet-based backbone block for learning representations of sequences and an LSTM with a Temporal Attention module for capturing the hidden interactions between features of multi-channel inputs. To evaluate the effectiveness of our proposed method, we carry out several experiments including an ablation study on our collected and preprocessed air quality data near HKUST. The experimental results show our model can effectively predict the air quality level of the next timestamp given any segment of the air quality data from the data set. We have also released our standalone dataset at https://github.com/AI-Huang/IAQI_Dataset The model and code for this paper are publicly available at https://github.com/AI-Huang/AirEvaluation
翻译:在快速工业化的同时,人类正在遭受严重的空气污染问题。对空气质量预测的需求对政府的决策和人民的日常生活越来越重要。在本文中,我们提议GreenEyes -- -- 一个深神经网络模型,其中包括一个基于WaveNet的骨干块,用于学习序列的表达,以及一个LSTM, 包含一个时间关注模块,用于捕捉多通道投入各特征之间的隐藏互动。为了评估我们拟议方法的有效性,我们进行了几项实验,包括对在HHKUST附近收集和预先处理的空气质量数据进行消化研究。实验结果显示,根据数据集空气质量数据的任何部分,我们的模型可以有效地预测下一个时间戳的空气质量水平。我们还在https://github.com/AI-Huang/IAQI_Dataset公布了我们的独立数据集。本文的模型和代码公布在https://github.com/AI-Huang/AQI_Dataset。