Federated learning (FL) is a distributed machine learning paradigm where enormous scattered clients (e.g. mobile devices or IoT devices) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. Unfortunately, FL is susceptible to a variety of attacks, including backdoor attack, which is made substantially worse in the presence of malicious attackers. Most of algorithms usually assume that the malicious at tackers no more than benign clients or the data distribution is independent identically distribution (IID). However, no one knows the number of malicious attackers and the data distribution is usually non identically distribution (Non-IID). In this paper, we propose RFLBAT which utilizes principal component analysis (PCA) technique and Kmeans clustering algorithm to defend against backdoor attack. Our algorithm RFLBAT does not bound the number of backdoored attackers and the data distribution, and requires no auxiliary information outside of the learning process. We conduct extensive experiments including a variety of backdoor attack types. Experimental results demonstrate that RFLBAT outperforms the existing state-of-the-art algorithms and is able to resist various backdoor attack scenarios including different number of attackers (DNA), different Non-IID scenarios (DNS), different number of clients (DNC) and distributed backdoor attack (DBA).


翻译:联邦学习(FL)是一种分布式的机器学习模式,在这种模式中,巨大的分散客户(例如移动装置或IoT装置)在中央服务器(例如服务提供商)的协同安排下合作培训一个模型,同时保持培训数据分散;不幸的是,FL容易受到各种攻击,包括后门攻击,在恶意攻击者在场的情况下,这种攻击大大恶化;大多数算法通常假定,对塔克的恶意攻击只与良性客户或数据分发是独立的,而同样分布(IID)。然而,没有人知道恶意攻击者的数量和数据分发通常不完全相同(非IID)。在本文件中,我们提议RFLBAT采用主要组成部分分析(PCA)技术和KUMEs组合算法来防范后门攻击。我们的算法并不约束后门攻击者的数量和数据分发,也不要求学习过程之外的任何辅助信息。我们进行广泛的实验,包括各种后门攻击类型。实验结果显示,RFLBATAT超越了现有的州-NS攻击(非II级攻击情景中的不同数字,包括不同的国内-D攻击的反门攻击的客户(不同的反向-D)数字。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2020年10月26日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员