The priority model was introduced to capture "greedy-like" algorithms. Motivated by the success of advice complexity in the area of online algorithms, the fixed priority model was extended to include advice, and a reduction-based framework was developed for proving lower bounds on the amount of advice required to achieve certain approximation ratios in this rather powerful model. To capture most of the algorithms that are considered greedy-like, the even stronger model of adaptive priority algorithms is needed. We extend the adaptive priority model to include advice. We modify the reduction-based framework from the fixed priority case to work with the more powerful adaptive priority algorithms, simplifying the proof of correctness and strengthening all previous lower bounds by a factor of two in the process. We also present a purely combinatorial adaptive priority algorithm with advice for Minimum Vertex Cover on triangle-free graphs of maximum degree three. Our algorithm achieves optimality and uses at most 7n/22 bits of advice. No adaptive priority algorithm without advice can achieve optimality without advice, and we prove that an online algorithm with advice needs more than 7n/22 bits of advice to reach optimality. We show connections between exact algorithms and priority algorithms with advice. The branching in branch-and-reduce algorithms can be seen as trying all possible advice strings, and all priority algorithms with advice that achieve optimality define corresponding exact algorithms, priority exact algorithms. Lower bounds on advice-based adaptive algorithms imply lower bounds on running times of exact algorithms designed in this way.
翻译:优先模式被引入以捕捉“ 贪婪类” 算法。 受在线算法领域咨询复杂程度的成功激励, 固定优先模式被扩展为包括咨询在内的建议复杂性, 固定优先模式被扩展为包括咨询, 并开发了一个基于削减的框架, 以证明在这个相当强大的模型中达到某些近似比率所需的咨询量的下限。 要捕捉被认为贪婪类的、 更强大的适应性优先算法模型的多数算法, 需要更强大的适应性优先模式。 我们扩展适应性优先模式以包括咨询。 我们修改基于削减的框架, 与更强大的适应性优先级算法合作, 简化正确性证明正确性的证据, 强化先前所有较低范围的范围。 我们还提出了一个纯粹的组合性适应性优先性优先级算法, 向最小 Vertexex Clove提供建议。 我们的算法实现了最佳性, 最多为 7n22 位数的适应性优先级算法, 没有建议, 任何基于建议的适应性优先级算法的在线算法需要超过 7n/ 22 位数的运行优化性建议, 并用最优化性算法 和最精确的分级算法 定义,, 在精确级算法中, 中的所有级算法和最精度建议, 的分级算法, 的分级级算法, 确定所有精度 的精度, 的精准性算法和最精度 的精度, 的精度 的精度 精度, 精度, 精度是精确性算法 的精度 的精度,, 精度, 精度, 精度, 精度, 精度和精度是精确性算性算法和精度算法 的精度算性算法和精度, 的精度算法和精度, 的精度 的精度 的精度算法和精度 精度 精度 精度 精度 的精度 精度 精度算法和精度 的精度算法和精度算法和精度算法和精度算法。