Large Transformer-based language models can aid human authors by suggesting plausible continuations of text written so far. However, current interactive writing assistants do not allow authors to guide text generation in desired topical directions. To address this limitation, we design a framework that displays multiple candidate upcoming topics, of which a user can select a subset to guide the generation. Our framework consists of two components: (1) a method that produces a set of candidate topics by predicting the centers of word clusters in the possible continuations, and (2) a text generation model whose output adheres to the chosen topics. The training of both components is self-supervised, using only unlabeled text. Our experiments demonstrate that our topic options are better than those of standard clustering approaches, and our framework often generates fluent sentences related to the chosen topics, as judged by automated metrics and crowdsourced workers.


翻译:大型变换语言模型可以建议迄今为止所写文本的合理延续,从而帮助人类作者。然而,目前的交互式写作助理不允许作者以理想的主题方向指导文本生成。为了应对这一限制,我们设计了一个框架,展示多个候选人即将到来的主题,用户可以选择一个子集来指导这一代人。我们的框架由两个组成部分组成:(1) 一种方法,通过预测可能的延续中文字群集中心来产生一套候选主题,以及(2) 一种文本生成模型,其产出符合所选主题。 两个组成部分的培训都是自我监督的,只使用未标的文本。我们的实验表明,我们的主题选项比标准组合方法更好,而我们的框架常常产生与所选专题有关的流畅的句子,由自动计量仪和众源工人来判断。

0
下载
关闭预览

相关内容

【AAAI2021】生成式Transformer的对比三元组提取
专知会员服务
51+阅读 · 2021年2月7日
Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
Arxiv
3+阅读 · 2018年11月13日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
7+阅读 · 2018年4月21日
Arxiv
3+阅读 · 2018年4月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员