This paper presents an online evolving neural network-based inverse dynamics learning controller for an autonomous vehicles' longitudinal and lateral control under model uncertainties and disturbances. The inverse dynamics of the vehicle is approximated using a feedback error learning mechanism that utilizes a dynamic Radial Basis Function neural network, referred to as the Extended Minimal Resource Allocating Network (EMRAN). EMRAN uses an extended Kalman filter approach for learning and a growing/pruning condition helps in keeping the number of hidden neurons minimum. The online learning algorithm helps in handling the uncertainties and dynamic variations and also the unknown disturbances on the road. The proposed control architecture employs two coupled conventional controllers aided by the EMRAN inverse dynamics controller. The control architecture has a conventional PID controller for cruise control and a Stanley controller for path-tracking. Performances of both the longitudinal and lateral controllers are compared with existing control methods and the results clearly indicate that the proposed control scheme handles the disturbances and parametric uncertainties better, and also provides better tracking performance in autonomous vehicles.


翻译:本文展示了在模型不确定性和扰动下自动车辆纵向和横向控制的在线进化神经网络反动态动态学习控制器,该飞行器的反动动态大约使用一个反馈错误学习机制,该机制使用动态半径基功能神经网络,称为扩展最小资源分配网络(EMRAAN)。EMRAAN使用一个扩大的Kalman过滤器方法进行学习,而不断增长/运行的条件有助于尽量减少隐藏神经元的数量。在线学习算法有助于处理不确定性和动态变异以及道路上未知的扰动。拟议的控制结构使用两个同时由EMRAAN反动动态控制器辅助的常规控制器。控制结构有一个传统的巡航控制器PID控制器和跟踪路径的斯坦利控制器。将纵向和横向控制器的性能与现有的控制方法进行了比较,结果清楚地表明,拟议的控制机制能够更好地处理扰动和参数不确定性,并更好地跟踪自主车辆的性能。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
0+阅读 · 2021年8月20日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员