The k-means++ algorithm is the de-facto standard for finding approximate solutions to the k-means problem. A widely used implementation is provided by the scikit-learn Python package for machine learning. We propose the breathing k-means algorithm, which on average significantly outperforms scikit-learn's k-means++ w.r.t. both solution quality and execution speed. The initialization step in the new method is done by k-means++ but without the usual (and costly) repetitions (ten in scikit-learn). The core of the new method is a sequence of "breathing cycles," each consisting of a "breathe in" step where the number of centroids is increased by m and a "breathe out" step where m centroids are removed. Each step is ended by a run of Lloyd's algorithm. The parameter m is decreased until zero, at which point the algorithm terminates. With the default (m = 5), breathing k-means dominates scikit-learn's k-means++. This is demonstrated via experiments on various data sets, including all those from the original k-means++ publication. By setting m to smaller or larger values, one can optionally produce faster or better solutions, respectively. For larger values of m, e.g., m = 20, breathing k-means likely is the new SOTA for the k-means problem.


翻译:k- means++ 算法是寻找 k- point 问题近似解决方案的 defacto 标准 。 由 scikit- learn Python 软件包为机器学习提供广泛使用的执行 。 我们提出呼吸 kpoys 算法, 平均明显优于 scikit- learn k- moys++ w.r. t. 的解决方案质量和执行速度。 新方法的初始化步骤由 k- poys++ 完成, 但没有通常的( 10 scikit- learn ) 重复( 10 ) 。 新方法的核心是“ 呼吸周期” 的序列 。 我们建议使用 呼吸 k- points 算法, 平均优于 sikit- modal 的“ breathe mreathe mologies” 。 参数 mreax mile male lax to new, oral due orals to the new rudeal rudeal rudeal- klives.

0
下载
关闭预览

相关内容

Scikit-learn项目最早由数据科学家David Cournapeau 在2007 年发起,需要NumPy和SciPy等其他包的支持,是Python语言中专门针对机器学习应用而发展起来的一款开源框架。
专知会员服务
81+阅读 · 2021年7月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
动手写机器学习算法:K-Means聚类算法
七月在线实验室
5+阅读 · 2017年12月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
13+阅读 · 2021年5月3日
Arxiv
3+阅读 · 2020年11月26日
Arxiv
8+阅读 · 2018年11月21日
VIP会员
相关VIP内容
专知会员服务
81+阅读 · 2021年7月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
动手写机器学习算法:K-Means聚类算法
七月在线实验室
5+阅读 · 2017年12月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员