We herein establish an asymptotic representation theorem for locally asymptotically normal quantum statistical models. This theorem enables us to study the asymptotic efficiency of quantum estimators such as quantum regular estimators and quantum minimax estimators, leading to a universal tight lower bound beyond the i.i.d. assumption. This formulation complements the theory of quantum contiguity developed in the previous paper [Fujiwara and Yamagata, Bernoulli 26 (2020) 2105-2141], providing a solid foundation of the theory of weak quantum local asymptotic normality.
翻译:我们在此为本地无症状正常量子统计模型建立一个无症状代表理论。 这个理论使我们得以研究量子测量器的无症状效率,例如量子定期测算器和量子小型测算器,从而导致比i.i.d.假设范围更普遍地更紧紧,这一提法补充了前一份文件[Fujiwara和Yamagata, Bernoulli 26 (202020年) 2105-2141] 中制定的量子毗连理论,为弱量子局部无症状正常性理论提供了坚实的基础。