Recommendation engines are integral to the modern e-commerce experience, both for the seller and the end user. Accurate recommendations lead to higher revenue and better user experience. In this paper, we are presenting our solution to ECML PKDD Farfetch Fashion Recommendation Challenge.The goal of this challenge is to maximize the chances of a click when the users are presented with set of fashion items. We have approached this problem as a binary classification problem. Our winning solution utilizes Catboost as the classifier and Bayesian Optimization for hyper parameter tuning. Our baseline model achieved MRR of 0.5153 on the validation set. Bayesian optimization of hyper parameters improved the MRR to 0.5240 on the validation set. Our final submission on the test set achieved a MRR of 0.5257.
翻译:建议引擎对于卖方和终端用户都是现代电子商务经验的组成部分。准确的建议导致更高的收入和更好的用户经验。在本文件中,我们正在提出ECML PKDD Farfetch 时装建议挑战的解决方案。这项挑战的目标是,当用户看到一套时装物品时,最大限度地增加点击机会。我们将此问题作为一个二元分类问题处理。我们获胜的解决方案利用Catboost作为分类器和Bayesian优化软件进行超强参数调整。我们的基线模型在验证集上达到了0.553兆雷亚尔。Bayesian对超高参数的优化将验证集的MRR提高到0.5240。我们最后提交的测试集实现了0.5257兆雷亚尔的0.5257兆雷亚尔。