Snapshot compressive imaging (SCI) captures multispectral images (MSIs) using a single coded two-dimensional (2-D) measurement, but reconstructing high-fidelity MSIs from these compressed inputs remains a fundamentally ill-posed challenge. While diffusion-based reconstruction methods have recently raised the bar for quality, they face critical limitations: a lack of large-scale MSI training data, adverse domain shifts from RGB-pretrained models, and inference inefficiencies due to multi-step sampling. These drawbacks restrict their practicality in real-world applications. In contrast to existing methods, which either follow costly iterative refinement or adapt subspace-based embeddings for diffusion models (e.g. DiffSCI, PSR-SCI), we introduce a fundamentally different paradigm: a self-supervised One-Step Diffusion (OSD) framework specifically designed for SCI. The key novelty lies in using a single-step diffusion refiner to correct an initial reconstruction, eliminating iterative denoising entirely while preserving generative quality. Moreover, we adopt a self-supervised equivariant learning strategy to train both the predictor and refiner directly from raw 2-D measurements, enabling generalization to unseen domains without the need for ground-truth MSI. To further address the challenge of limited MSI data, we design a band-selection-driven distillation strategy that transfers core generative priors from large-scale RGB datasets, effectively bridging the domain gap. Extensive experiments confirm that our approach sets a new benchmark, yielding PSNR gains of 3.44 dB, 1.61 dB, and 0.28 dB on the Harvard, NTIRE, and ICVL datasets, respectively, while reducing reconstruction time by 97.5%. This remarkable improvement in efficiency and adaptability makes our method a significant advancement in SCI reconstruction, combining both accuracy and practicality for real-world deployment.
翻译:快照压缩成像(SCI)通过单次编码的二维(2-D)测量捕获多光谱图像(MSI),但从这些压缩输入中重建高保真MSI仍然是一个本质上的不适定挑战。尽管基于扩散的重建方法最近提升了质量基准,但它们面临关键限制:缺乏大规模MSI训练数据、RGB预训练模型带来的不利域偏移,以及多步采样导致的推理效率低下。这些缺点限制了它们在实际应用中的实用性。与现有方法(如DiffSCI、PSR-SCI)要么采用昂贵的迭代精炼,要么为扩散模型适配基于子空间的嵌入不同,我们引入了一种根本不同的范式:专为SCI设计的自监督单步扩散(OSD)框架。其核心创新在于使用单步扩散精炼器来校正初始重建,完全消除了迭代去噪过程,同时保持了生成质量。此外,我们采用自监督等变学习策略,直接从原始二维测量中训练预测器和精炼器,从而能够在无需地面真实MSI的情况下泛化到未见域。为了进一步应对MSI数据有限的挑战,我们设计了一种波段选择驱动的蒸馏策略,将核心生成先验从大规模RGB数据集中迁移,有效弥合了域差距。大量实验证实,我们的方法设定了新的基准,在Harvard、NTIRE和ICVL数据集上分别实现了3.44 dB、1.61 dB和0.28 dB的PSNR提升,同时将重建时间减少了97.5%。这种效率和适应性的显著提升使我们的方法成为SCI重建领域的重要进展,兼顾了准确性和实际部署的实用性。