We present Knowledge Extraction on OMIn (KEO), a domain-specific knowledge extraction and reasoning framework with large language models (LLMs) in safety-critical contexts. Using the Operations and Maintenance Intelligence (OMIn) dataset, we construct a QA benchmark spanning global sensemaking and actionable maintenance tasks. KEO builds a structured Knowledge Graph (KG) and integrates it into a retrieval-augmented generation (RAG) pipeline, enabling more coherent, dataset-wide reasoning than traditional text-chunk RAG. We evaluate locally deployable LLMs (Gemma-3, Phi-4, Mistral-Nemo) and employ stronger models (GPT-4o, Llama-3.3) as judges. Experiments show that KEO markedly improves global sensemaking by revealing patterns and system-level insights, while text-chunk RAG remains effective for fine-grained procedural tasks requiring localized retrieval. These findings underscore the promise of KG-augmented LLMs for secure, domain-specific QA and their potential in high-stakes reasoning.


翻译:本文提出KEO(Knowledge Extraction on OMIn),一种面向安全关键领域、基于大语言模型(LLM)的领域知识提取与推理框架。利用运营与维护智能(OMIn)数据集,我们构建了涵盖全局态势理解与可执行维护任务的问答基准。KEO通过构建结构化知识图谱(KG)并将其集成至检索增强生成(RAG)流程,实现了比传统文本分块RAG更连贯、覆盖全数据集的推理能力。我们评估了可本地部署的LLM(Gemma-3、Phi-4、Mistral-Nemo),并采用更强模型(GPT-4o、Llama-3.3)作为评判器。实验表明,KEO通过揭示模式与系统级洞察,显著提升了全局态势理解能力;而文本分块RAG在需要局部检索的细粒度程序性任务中仍保持优势。这些发现印证了知识图谱增强的LLM在安全、领域特定的问答任务中的潜力,及其在高风险推理场景中的应用前景。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员