Social influence characterizes the change of an individual's stances in a complex social environment towards a topic. Two factors often govern the influence of stances in an online social network: endogenous influences driven by an individual's innate beliefs through the agent's past stances and exogenous influences formed by social network influence between users. Both endogenous and exogenous influences offer important cues to user susceptibility, thereby enhancing the predictive performance on stance changes or flipping. In this work, we propose a stance flipping prediction problem to identify Twitter agents that are susceptible to stance flipping towards the coronavirus vaccine (i.e., from pro-vaccine to anti-vaccine). Specifically, we design a social influence model where each agent has some fixed innate stance and a conviction of the stance that reflects the resistance to change; agents influence each other through the social network structure.From data collected between April 2020 to May 2021, our model achieves 86\% accuracy in predicting agents that flip stances. Further analysis identifies that agents that flip stances have significantly more neighbors engaging in collective expression of the opposite stance, and 53.7% of the agents that flip stances are bots and bot agents require lesser social influence to flip stances.


翻译:社会影响是个人在复杂的社会环境中对一个主题立场变化的特点。在网上社会网络中,个人立场影响往往由两种因素决定:由个人内在信仰驱动的内生影响,通过代理人过去的立场和由社会网络影响形成的外生影响。内生和外生影响都为用户的易感性提供了重要的提示,从而提高了姿态变化或翻动的预测性能。在这项工作中,我们提出一个姿态反动预测问题,以识别可能向科罗纳病毒疫苗(从亲疫苗到抗疫苗)倾斜的Twitter代理。具体地说,我们设计了一个社会影响模式,每个代理人都具有某种固定的内生立场和对反映变革抵制立场的信念的信念;代理人通过社会网络结构相互影响。根据2020年4月至2021年5月收集的数据,我们的模型在预测反动立场的制剂方面达到了86 ⁇ 精确度。进一步分析发现,在集体表达相反立场时,反动立场的代理人比邻居要多得多,而反动立场的代理人有53.7%的代理人需要更弱的社会代理人。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Large Language Models and the Reverse Turing Test
Arxiv
0+阅读 · 2022年9月13日
Arxiv
0+阅读 · 2022年9月12日
Arxiv
0+阅读 · 2022年9月10日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员