Twin support vector machine (TSVM) and twin support vector regression (TSVR) are newly emerging efficient machine learning techniques which offer promising solutions for classification and regression challenges respectively. TSVM is based upon the idea to identify two nonparallel hyperplanes which classify the data points to their respective classes. It requires to solve two small sized quadratic programming problems (QPPs) in lieu of solving single large size QPP in support vector machine (SVM) while TSVR is formulated on the lines of TSVM and requires to solve two SVM kind problems. Although there has been good research progress on these techniques; there is limited literature on the comparison of different variants of TSVR. Thus, this review presents a rigorous analysis of recent research in TSVM and TSVR simultaneously mentioning their limitations and advantages. To begin with we first introduce the basic theory of TSVM and then focus on the various improvements and applications of TSVM, and then we introduce TSVR and its various enhancements. Finally, we suggest future research and development prospects.


翻译:双向支持矢量机(TSVM)和双向支持矢量回归(TSVR)是新出现的高效机器学习技术,分别为分类和回归挑战提供有希望的解决方案。TSVM基于一种想法,即确定将数据点分类到各自分类的两种非平行超天体;它需要解决两个小型的二次编程问题,而不是解决用于支持矢量机(SVM)的单一大号QPP(QPP),而TSVR则在TSVM线上制定,并需要解决两个SVM型问题。虽然这些技术的研究进展良好;关于对TSVR不同变体进行比较的文献有限。因此,本审查对最近对TSVM和TSVR的研究进行了严格分析,同时提到其局限性和优势。首先我们介绍TSVM的基本理论,然后侧重于TSVM的各种改进和应用,然后我们介绍TSVR及其各种强化。最后,我们建议未来的研究与发展前景。

1
下载
关闭预览

相关内容

在机器学习中,支持向量机(SVM,也称为支持向量网络)是带有相关学习算法的监督学习模型,该算法分析用于分类和回归分析的数据。支持向量机(SVM)算法是一种流行的机器学习工具,可为分类和回归问题提供解决方案。给定一组训练示例,每个训练示例都标记为属于两个类别中的一个或另一个,则SVM训练算法会构建一个模型,该模型将新示例分配给一个类别或另一个类别,使其成为非概率二进制线性分类器(尽管方法存在诸如Platt缩放的问题,以便在概率分类设置中使用SVM)。SVM模型是将示例表示为空间中的点,并进行了映射,以使各个类别的示例被尽可能宽的明显间隙分开。然后,将新示例映射到相同的空间,并根据它们落入的间隙的侧面来预测属于一个类别。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
零基础学SVM—Support Vector Machine系列之一
AI研习社
7+阅读 · 2017年11月10日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
26+阅读 · 2018年8月19日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
零基础学SVM—Support Vector Machine系列之一
AI研习社
7+阅读 · 2017年11月10日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员