The approximate Carath\'eodory theorem states that given a compact convex set $\mathcal{C}\subset\mathbb{R}^n$ and $p\in\left[2,+\infty\right[$, each point $x^*\in\mathcal{C}$ can be approximated to $\epsilon$-accuracy in the $\ell_p$-norm as the convex combination of $\mathcal{O}(pD_p^2/\epsilon^2)$ vertices of $\mathcal{C}$, where $D_p$ is the diameter of $\mathcal{C}$ in the $\ell_p$-norm. A solution satisfying these properties can be built using probabilistic arguments or by applying mirror descent to the dual problem. We revisit the approximate Carath\'eodory problem by solving the primal problem via the Frank-Wolfe algorithm, providing a simplified analysis and leading to an efficient practical method. Furthermore, improved cardinality bounds are derived naturally using existing convergence rates of the Frank-Wolfe algorithm in different scenarios, when $x^*$ is in the (relative) interior of $\mathcal{C}$, when $x^*$ is the convex combination of a subset of vertices with small diameter, or when $\mathcal{C}$ is uniformly convex. We also propose cardinality bounds when $p\in\left[1,2\right[\cup\{+\infty\}$ via a nonsmooth variant of the algorithm. Lastly, we address the problem of finding sparse approximate projections onto $\mathcal{C}$ in the $\ell_p$-norm, $p\in\left[1,+\infty\right]$.
翻译:大约的 Carath\\\ odory 理论表示,根据一个压缩的直径设置 $\ mathcal{C\\ subset\ mathb{R\ n$和$p\ left[2,\\ infty\right[美元,每个点$x_in\ mathcal{C}$的近似 美元在$\ ell_ p_ p$- norm $\ mathcal{O} (pD_ p\\ p\\\\\ epslon2) 美元($\ mexcal=macal} 美元(美元) 和美元(美元) 美元) 的顺差值(美元), 美元(crentral\\ px 美元(美元) 的直径解的直径(美元) 直径(美元) 的直径直径=美元(美元) 直径=cal_ cal_ max max max 的直方形的直方形的直方值, 当目前直方的直方的直方的直方的直方的直方的直方值是正方形的直方值的直方值的直方值的直方值的直方的直方的直方的直方值時, 当目前方的直方的直方的直方的直方的直方的直方的直方的直方的直方值是直方的直方值時, 当正方的直方值的直方的直方的直方程式的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方程式的直方值是直方值是直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方方方方方的直方方