The approximate Carath\'eodory theorem states that given a compact convex set $\mathcal{C}\subset\mathbb{R}^n$ and $p\in\left[2,+\infty\right[$, each point $x^*\in\mathcal{C}$ can be approximated to $\epsilon$-accuracy in the $\ell_p$-norm as the convex combination of $\mathcal{O}(pD_p^2/\epsilon^2)$ vertices of $\mathcal{C}$, where $D_p$ is the diameter of $\mathcal{C}$ in the $\ell_p$-norm. A solution satisfying these properties can be built using probabilistic arguments or by applying mirror descent to the dual problem. We revisit the approximate Carath\'eodory problem by solving the primal problem via the Frank-Wolfe algorithm, providing a simplified analysis and leading to an efficient practical method. Furthermore, improved cardinality bounds are derived naturally using existing convergence rates of the Frank-Wolfe algorithm in different scenarios, when $x^*$ is in the (relative) interior of $\mathcal{C}$, when $x^*$ is the convex combination of a subset of vertices with small diameter, or when $\mathcal{C}$ is uniformly convex. We also propose cardinality bounds when $p\in\left[1,2\right[\cup\{+\infty\}$ via a nonsmooth variant of the algorithm. Lastly, we address the problem of finding sparse approximate projections onto $\mathcal{C}$ in the $\ell_p$-norm, $p\in\left[1,+\infty\right]$.


翻译:大约的 Carath\\\ odory 理论表示,根据一个压缩的直径设置 $\ mathcal{C\\ subset\ mathb{R\ n$和$p\ left[2,\\ infty\right[美元,每个点$x_in\ mathcal{C}$的近似 美元在$\ ell_ p_ p$- norm $\ mathcal{O} (pD_ p\\ p\\\\\ epslon2) 美元($\ mexcal=macal} 美元(美元) 和美元(美元) 美元) 的顺差值(美元), 美元(crentral\\ px 美元(美元) 的直径解的直径(美元) 直径(美元) 的直径直径=美元(美元) 直径=cal_ cal_ max max max 的直方形的直方形的直方值, 当目前直方的直方的直方的直方的直方的直方的直方值是正方形的直方值的直方值的直方值的直方值的直方的直方的直方的直方值時, 当目前方的直方的直方的直方的直方的直方的直方的直方的直方的直方值是直方的直方值時, 当正方的直方值的直方的直方的直方程式的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方程式的直方值是直方值是直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方的直方方方方方的直方方

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
手写决策树
七月在线实验室
4+阅读 · 2017年9月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
Arxiv
0+阅读 · 2021年6月2日
Arxiv
0+阅读 · 2021年6月2日
VIP会员
相关VIP内容
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
手写决策树
七月在线实验室
4+阅读 · 2017年9月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
Top
微信扫码咨询专知VIP会员