Diffusion models, as a novel generative paradigm, have achieved remarkable success in various image generation tasks such as image inpainting, image-to-text translation, and video generation. Graph generation is a crucial computational task on graphs with numerous real-world applications. It aims to learn the distribution of given graphs and then generate new graphs. Given the great success of diffusion models in image generation, increasing efforts have been made to leverage these techniques to advance graph generation in recent years. In this paper, we first provide a comprehensive overview of generative diffusion models on graphs, In particular, we review representative algorithms for three variants of graph diffusion models, i.e., Score Matching with Langevin Dynamics (SMLD), Denoising Diffusion Probabilistic Model (DDPM), and Score-based Generative Model (SGM). Then, we summarize the major applications of generative diffusion models on graphs with a specific focus on molecule and protein modeling. Finally, we discuss promising directions in generative diffusion models on graph-structured data.
翻译:投影模型作为一种新型的基因模型,在各种图像生成任务,例如图像油漆、图像到文本翻译和视频生成方面取得了显著的成功。图表生成是具有多种现实应用的图表上的一个关键计算任务。它旨在学习特定图表的分布,然后生成新的图表。鉴于图像生成的传播模型的巨大成功,近年来已经加大了努力,利用这些技术推进图形生成。在本文中,我们首先全面概述了图表中的基因化扩散模型,特别是,我们审查了图表传播模型三种变种的代表性算法,即:与朗埃文动力学(SMLD)匹配的评分、Denoising Difmissulation Probabilictic 模型(DDPM)和基于分数的创型模型(SGM)。然后,我们总结了图表中以分子和蛋白质模型为特定重点的基因化传播模型的主要应用。最后,我们讨论了图表结构数据中基因化传播模型的有希望的方向。