In this paper we investigate the frequency sensitivity of Deep Neural Networks (DNNs) when presented with clean samples versus poisoned samples. Our analysis shows significant disparities in frequency sensitivity between these two types of samples. Building on these findings, we propose FREAK, a frequency-based poisoned sample detection algorithm that is simple yet effective. Our experimental results demonstrate the efficacy of FREAK not only against frequency backdoor attacks but also against some spatial attacks. Our work is just the first step in leveraging these insights. We believe that our analysis and proposed defense mechanism will provide a foundation for future research and development of backdoor defenses.


翻译:在本文中,我们研究了Deep Neural Networks(DNNs)对干净样本与毒样本频率敏感性的影响。我们的分析表明,这两种样本之间的频率敏感性存在显著差异。在此基础上,我们提出了FREAK,一种简单且有效的基于频率的毒样本检测算法。我们的实验结果不仅证明了FREAK对频率后门攻击的有效性,而且对一些空间攻击也具有有效性。我们的工作只是利用这些见解的第一步。我们相信我们的分析和提出的防御机制将为未来的后门防御的研究和开发提供基础。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
【ICLR2021】神经元注意力蒸馏消除DNN中的后门触发器
专知会员服务
13+阅读 · 2021年1月31日
专知会员服务
60+阅读 · 2020年3月19日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年10月26日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员