Management of crowd information in public transportation (PT) systems is crucial to foster sustainable mobility, by increasing the user's comfort and satisfaction during normal operation, as well as to cope with emergency situations, such as pandemic crises, as recently experienced with COVID-19 limitations. This paper presents a taxonomy and review of sensing technologies based on Internet of Things (IoT) for real-time crowd analysis, which can be adopted in various segments of the PT system (buses/trams/trains, railway/subway stations, and bus stops). To discuss such technologies in a clear systematic perspective, we introduce a reference architecture for crowd management, which employs modern information and communication technologies (ICT) in order to: (i) monitor and predict crowding events; (ii) adapt in real-time PT system operations, by modifying service frequency, timetables, routes, and so on; (iii) inform in realtime the users of the crowding status of the PT system, by means of electronic displays installed inside vehicles or at bus stops/stations, and/or by mobile transport applications. It is envisioned that the innovative crowd management functionalities enabled by ICT/IoT sensing technologies can be incrementally implemented as an add-on to traditional intelligent transportation system (ITS) platforms, which are already in use by major PT companies operating in urban areas. Moreover, it is argued that, in this new framework, additional services can be delivered, such as, e.g., on-line ticketing, vehicle access control and reservation in severely crowded situations, and evolved crowd-aware route planning.


翻译:公共交通(PT)系统中的人群信息管理对于促进可持续流动性至关重要,通过提高用户在正常运行期间的舒适度和满意度,提高用户的舒适度和满意度,以及应对紧急情况(如最近在COVID-19限制下经历的大流行病危机),对公共交通(PT)系统中人群信息管理至关重要,本文件介绍了基于Times(IoT)互联网的实时人群分析技术的分类和审查,可在PT系统的各个部分(Bus/trams/trains、铁路/高速公路站和公共汽车站)采用这种技术。为了从明确的系统角度讨论这类技术,我们引入了人群管理参考架构,采用现代的信息和通信技术(ICT),以便:(一) 监测和预测拥挤事件;(二) 通过修改服务频率、时间表、路线等,对实时PT系统运行技术进行调整;(三) 实时告知PT系统的用户,通过在车辆内部或公共汽车站/火车站安装或汽车站和/或移动运输应用上安装电子显示,我们设想,在传统交通(ICFS/IT)线路上采用创新的人群管理功能,在智能运输领域,通过智能运输系统进行逐步操作,在城市运输领域实施。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年2月2日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员