Quite surprisingly, exact maximum a posteriori (MAP) decoding of neural language generators frequently leads to low-quality results. Rather, most state-of-the-art results on language generation tasks are attained using beam search despite its overwhelmingly high search error rate. This implies that the MAP objective alone does not express the properties we desire in text, which merits the question: if beam search is the answer, what was the question? We frame beam search as the exact solution to a different decoding objective in order to gain insights into why high probability under a model alone may not indicate adequacy. We find that beam search enforces uniform information density in text, a property motivated by cognitive science. We suggest a set of decoding objectives that explicitly enforce this property and find that exact decoding with these objectives alleviates the problems encountered when decoding poorly calibrated language generation models. Additionally, we analyze the text produced using various decoding strategies and see that, in our neural machine translation experiments, the extent to which this property is adhered to strongly correlates with BLEU.


翻译:相当令人惊讶的是,神经语言生成器事后解码(MAP)的精确最大化往往导致低质量的结果。相反,语言生成任务的大多数最先进的结果都是在光束搜索中取得的,尽管其搜索出错率极高。这意味着MAP的目标本身并不表示我们在文本中想要表达的属性,这值得问:如果光束搜索是答案,问题是什么?我们将光束搜索作为不同解码目标的精确解决办法,以便了解为什么单凭一个模型的高概率可能并不充分。我们发现,在进行搜索时,文本中采用了统一的信息密度,这是由认知科学驱动的一种属性。我们建议了一系列解码目标,明确执行这一属性,并发现与这些目标的精确解码可以缓解在解码不当的语言生成模型时所遇到的问题。此外,我们利用各种解码战略分析产生的文本,并看到在神经机器翻译实验中,该属性在多大程度上与BLEU密切关联。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年9月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
1+阅读 · 2021年3月10日
Arxiv
9+阅读 · 2020年2月15日
Arxiv
4+阅读 · 2018年5月14日
Arxiv
5+阅读 · 2018年3月16日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年9月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员