We introduce a new class of non-linear models for functional data based on neural networks. Deep learning has been very successful in non-linear modeling, but there has been little work done in the functional data setting. We propose two variations of our framework: a functional neural network with continuous hidden layers, called the Functional Direct Neural Network (FDNN), and a second version that utilizes basis expansions and continuous hidden layers, called the Functional Basis Neural Network (FBNN). Both are designed explicitly to exploit the structure inherent in functional data. To fit these models we derive a functional gradient based optimization algorithm. The effectiveness of the proposed methods in handling complex functional models is demonstrated by comprehensive simulation studies and real data examples.
翻译:我们为基于神经网络的功能性数据引入了新型的非线性模型。深层学习在非线性模型方面非常成功,但在功能性数据设置方面几乎没有做什么工作。我们建议了我们框架的两个变式:一个功能性神经网络,具有连续隐藏层,称为功能直接神经网络(FDNN),第二个版本,利用基础扩展和连续隐藏层,称为功能基础神经网络(FBNN)。两者都明确旨在利用功能性数据所固有的结构。为了适应这些模型,我们得出基于功能性梯度的优化算法。通过综合模拟研究和真实数据实例来证明拟议的处理复杂功能模型的方法的有效性。