Being able to see into walls is crucial for diagnostics of building health; it enables inspections of wall structure without undermining the structural integrity. However, existing sensing devices do not seem to offer a full capability in mapping the in-wall structure while identifying their status (e.g., seepage and corrosion). In this paper, we design and implement SiWa as a low-cost and portable system for wall inspections. Built upon a customized IR-UWB radar, SiWa scans a wall as a user swipes its probe along the wall surface; it then analyzes the reflected signals to synthesize an image and also to identify the material status. Although conventional schemes exist to handle these problems individually, they require troublesome calibrations that largely prevent them from practical adoptions. To this end, we equip SiWa with a deep learning pipeline to parse the rich sensory data. With an ingenious construction and innovative training, the deep learning modules perform structural imaging and the subsequent analysis on material status, without the need for parameter tuning and calibrations. We build SiWa as a prototype and evaluate its performance via extensive experiments and field studies; results confirm that SiWa accurately maps in-wall structures, identifies their materials, and detects possible failures, suggesting a promising solution for diagnosing building health with lower effort and cost.

0
下载
关闭预览

相关内容

Automation and robotisation of the agricultural sector are seen as a viable solution to socio-economic challenges faced by this industry. This technology often relies on intelligent perception systems providing information about crops, plants and the entire environment. The challenges faced by traditional 2D vision systems can be addressed by modern 3D vision systems which enable straightforward localisation of objects, size and shape estimation, or handling of occlusions. So far, the use of 3D sensing was mainly limited to indoor or structured environments. In this paper, we evaluate modern sensing technologies including stereo and time-of-flight cameras for 3D perception of shape in agriculture and study their usability for segmenting out soft fruit from background based on their shape. To that end, we propose a novel 3D deep neural network which exploits the organised nature of information originating from the camera-based 3D sensors. We demonstrate the superior performance and efficiency of the proposed architecture compared to the state-of-the-art 3D networks. Through a simulated study, we also show the potential of the 3D sensing paradigm for object segmentation in agriculture and provide insights and analysis of what shape quality is needed and expected for further analysis of crops. The results of this work should encourage researchers and companies to develop more accurate and robust 3D sensing technologies to assure their wider adoption in practical agricultural applications.

0
0
下载
预览

Bird's-Eye-View (BEV) maps have emerged as one of the most powerful representations for scene understanding due to their ability to provide rich spatial context while being easy to interpret and process. Such maps have found use in many real-world tasks that extensively rely on accurate scene segmentation as well as object instance identification in the BEV space for their operation. However, existing segmentation algorithms only predict the semantics in the BEV space, which limits their use in applications where the notion of object instances is also critical. In this work, we present the first BEV panoptic segmentation approach for directly predicting dense panoptic segmentation maps in the BEV, given a single monocular image in the frontal view (FV). Our architecture follows the top-down paradigm and incorporates a novel dense transformer module consisting of two distinct transformers that learn to independently map vertical and flat regions in the input image from the FV to the BEV. Additionally, we derive a mathematical formulation for the sensitivity of the FV-BEV transformation which allows us to intelligently weight pixels in the BEV space to account for the varying descriptiveness across the FV image. Extensive evaluations on the KITTI-360 and nuScenes datasets demonstrate that our approach exceeds the state-of-the-art in the PQ metric by 3.61 pp and 4.93 pp respectively.

0
0
下载
预览

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

0
9
下载
预览

We present a learning-based approach for removing unwanted obstructions, such as window reflections, fence occlusions or raindrops, from a short sequence of images captured by a moving camera. Our method leverages the motion differences between the background and the obstructing elements to recover both layers. Specifically, we alternate between estimating dense optical flow fields of the two layers and reconstructing each layer from the flow-warped images via a deep convolutional neural network. The learning-based layer reconstruction allows us to accommodate potential errors in the flow estimation and brittle assumptions such as brightness consistency. We show that training on synthetically generated data transfers well to real images. Our results on numerous challenging scenarios of reflection and fence removal demonstrate the effectiveness of the proposed method.

0
7
下载
预览

This work focuses on mitigating two limitations in the joint learning of local feature detectors and descriptors. First, the ability to estimate the local shape (scale, orientation, etc.) of feature points is often neglected during dense feature extraction, while the shape-awareness is crucial to acquire stronger geometric invariance. Second, the localization accuracy of detected keypoints is not sufficient to reliably recover camera geometry, which has become the bottleneck in tasks such as 3D reconstruction. In this paper, we present ASLFeat, with three light-weight yet effective modifications to mitigate above issues. First, we resort to deformable convolutional networks to densely estimate and apply local transformation. Second, we take advantage of the inherent feature hierarchy to restore spatial resolution and low-level details for accurate keypoint localization. Finally, we use a peakiness measurement to relate feature responses and derive more indicative detection scores. The effect of each modification is thoroughly studied, and the evaluation is extensively conducted across a variety of practical scenarios. State-of-the-art results are reported that demonstrate the superiority of our methods.

0
5
下载
预览

Lane mark detection is an important element in the road scene analysis for Advanced Driver Assistant System (ADAS). Limited by the onboard computing power, it is still a challenge to reduce system complexity and maintain high accuracy at the same time. In this paper, we propose a Lane Marking Detector (LMD) using a deep convolutional neural network to extract robust lane marking features. To improve its performance with a target of lower complexity, the dilated convolution is adopted. A shallower and thinner structure is designed to decrease the computational cost. Moreover, we also design post-processing algorithms to construct 3rd-order polynomial models to fit into the curved lanes. Our system shows promising results on the captured road scenes.

0
5
下载
预览

Deep learning (DL) is a high dimensional data reduction technique for constructing high-dimensional predictors in input-output models. DL is a form of machine learning that uses hierarchical layers of latent features. In this article, we review the state-of-the-art of deep learning from a modeling and algorithmic perspective. We provide a list of successful areas of applications in Artificial Intelligence (AI), Image Processing, Robotics and Automation. Deep learning is predictive in its nature rather then inferential and can be viewed as a black-box methodology for high-dimensional function estimation.

0
3
下载
预览

The view synthesis problem--generating novel views of a scene from known imagery--has garnered recent attention due in part to compelling applications in virtual and augmented reality. In this paper, we explore an intriguing scenario for view synthesis: extrapolating views from imagery captured by narrow-baseline stereo cameras, including VR cameras and now-widespread dual-lens camera phones. We call this problem stereo magnification, and propose a learning framework that leverages a new layered representation that we call multiplane images (MPIs). Our method also uses a massive new data source for learning view extrapolation: online videos on YouTube. Using data mined from such videos, we train a deep network that predicts an MPI from an input stereo image pair. This inferred MPI can then be used to synthesize a range of novel views of the scene, including views that extrapolate significantly beyond the input baseline. We show that our method compares favorably with several recent view synthesis methods, and demonstrate applications in magnifying narrow-baseline stereo images.

0
3
下载
预览

Image segmentation needs both local boundary position information and global object context information. The performance of the recent state-of-the-art method, fully convolutional networks, reaches a bottleneck due to the neural network limit after balancing between the two types of information simultaneously in an end-to-end training style. To overcome this problem, we divide the semantic image segmentation into temporal subtasks. First, we find a possible pixel position of some object boundary; then trace the boundary at steps within a limited length until the whole object is outlined. We present the first deep reinforcement learning approach to semantic image segmentation, called DeepOutline, which outperforms other algorithms in Coco detection leaderboard in the middle and large size person category in Coco val2017 dataset. Meanwhile, it provides an insight into a divide and conquer way by reinforcement learning on computer vision problems.

0
9
下载
预览

We explore the use of deep learning hierarchical models for problems in financial prediction and classification. Financial prediction problems -- such as those presented in designing and pricing securities, constructing portfolios, and risk management -- often involve large data sets with complex data interactions that currently are difficult or impossible to specify in a full economic model. Applying deep learning methods to these problems can produce more useful results than standard methods in finance. In particular, deep learning can detect and exploit interactions in the data that are, at least currently, invisible to any existing financial economic theory.

0
3
下载
预览
小贴士
相关论文
Justin Le Louëdec,Grzegorz Cielniak
0+阅读 · 11月26日
Nikhil Gosala,Abhinav Valada
0+阅读 · 11月24日
Xing Su,Shan Xue,Fanzhen Liu,Jia Wu,Jian Yang,Chuan Zhou,Wenbin Hu,Cecile Paris,Surya Nepal,Di Jin,Quan Z. Sheng,Philip S. Yu
9+阅读 · 5月26日
Learning to See Through Obstructions
Yu-Lun Liu,Wei-Sheng Lai,Ming-Hsuan Yang,Yung-Yu Chuang,Jia-Bin Huang
7+阅读 · 2020年4月2日
Zixin Luo,Lei Zhou,Xuyang Bai,Hongkai Chen,Jiahui Zhang,Yao Yao,Shiwei Li,Tian Fang,Long Quan
5+阅读 · 2020年3月23日
Efficient Road Lane Marking Detection with Deep Learning
Ping-Rong Chen,Shao-Yuan Lo,Hsueh-Ming Hang,Sheng-Wei Chan,Jing-Jhih Lin
5+阅读 · 2018年9月11日
Deep Learning
Nicholas G. Polson,Vadim O. Sokolov
3+阅读 · 2018年8月3日
Tinghui Zhou,Richard Tucker,John Flynn,Graham Fyffe,Noah Snavely
3+阅读 · 2018年5月24日
Zhenxin Wang,Sayan Sarcar,Jingxin Liu,Yilin Zheng,Xiangshi Ren
9+阅读 · 2018年4月20日
J. B. Heaton,N. G. Polson,J. H. Witte
3+阅读 · 2018年1月14日
相关VIP内容
专知会员服务
28+阅读 · 8月8日
专知会员服务
43+阅读 · 2020年7月26日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
53+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
27+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
23+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
82+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
44+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
17+阅读 · 2019年10月9日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
5+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
8+阅读 · 2017年12月5日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
5+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】视频目标分割基础
机器学习研究会
8+阅读 · 2017年9月19日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
4+阅读 · 2017年6月29日
Top