If we wish to integrate a function $h|\Omega\subset\Re^{n}\to\Re$ along a single $T$-level surface of a function $\psi |\Omega\subset\Re^{n}\to\Re$, then a number of different methods for extracting finite elements appropriate to the dimension of the level surface may be employed to obtain an explicit representation over which the integration may be performed using standard numerical quadrature techniques along each element. However, when the goal is to compute an entire continuous family $m(T)$ of integrals over all the $T$-level surfaces of $\psi$, then this method of explicit level set extraction is no longer practical. We introduce a novel method to perform this type of numerical integration efficiently by making use of the coarea formula. We present the technique for discretization of the coarea formula and present the algorithms to compute the integrals over families of T-level surfaces. While validation of our method in the special case of a single level surface demonstrates accuracies close to more explicit isosurface integration methods, we show a sizable boost in computational efficiency in the case of multiple T-level surfaces, where our coupled integration algorithms significantly outperform sequential one-at-a-time application of explicit methods.


翻译:如果我们希望将一个函数($+ ⁇ Omega\subset\ re ⁇ n ⁇ to\ re$) 整合成一个函数 $+%Omega\subset\ re ⁇ n ⁇ to\ re$,那么,如果我们想将一个函数($>Omega\subset\ subset\ re ⁇ @re$) 的单一T$水平表面上一个函数($\psi$) 的连续家属($(T)美元),那么,这种清晰水平的提取方法就不再实用了。我们采用一种新的方法,通过使用共域公式来高效地进行这种类型的数字整合。我们介绍区域公式的离散化技术,并介绍在T级表面各组群中进行整合的算法。在单层表面特殊情况下验证我们的方法表明接近于更清晰的表面整合方法,我们展示了在多层集成的地面集成法中,我们展示了一种显著的地面集成法。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
已删除
将门创投
6+阅读 · 2019年11月21日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
Arxiv
0+阅读 · 2021年5月21日
Arxiv
0+阅读 · 2021年5月21日
Arxiv
0+阅读 · 2021年5月19日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员