Describing systems in terms of choices and their resulting costs and rewards offers the promise of freeing algorithm designers and programmers from specifying how those choices should be made; in implementations, the choices can be realized by optimization techniques and, increasingly, by machine learning methods. We study this approach from a programming-language perspective. We define two small languages that support decision-making abstractions: one with choices and rewards, and the other additionally with probabilities. We give both operational and denotational semantics. In the case of the second language we consider three denotational semantics, with varying degrees of correlation between possible program values and expected rewards. The operational semantics combine the usual semantics of standard constructs with optimization over spaces of possible execution strategies. The denotational semantics, which are compositional and can also be viewed as an implementation by translation to a simpler language, rely on the selection monad, to handle choice, combined with an auxiliary monad, to handle other effects such as rewards or probability. We establish adequacy theorems that the two semantics coincide in all cases. We also prove full abstraction at ground types, with varying notions of observation in the probabilistic case corresponding to the various degrees of correlation. We present axioms for choice combined with rewards and probability, establishing completeness at ground types for the case of rewards without probability.


翻译:从选择及其所产生的成本和奖赏的角度描述系统,可以使算法设计者和编程者能够自由说明如何作出这些选择;在实施过程中,选择可以通过优化技术实现,并越来越多地通过机器学习方法实现。我们从编程语言的角度研究这一方法。我们定义了两种支持决策抽象的小型语言:一种是选择和奖赏,另一种是概率;我们给出了操作和注解的语义。在第二种语言中,我们考虑的是三种省略语义词义词义学,在可能的程序值和预期的奖赏之间有着不同程度的相互关系。操作语义学将标准结构的通常语义与可能的执行战略空间的优化结合起来。德语义学,这些语义学是构成性的,也可以被理解为通过将语言译为更简单的语言来实施。我们根据选择方式和辅助语义论,处理其他效果,例如奖赏或概率。我们确定了两种语义的语义学原理充分性,在所有情况下,可能的程序值和预期的奖赏之间都具有不同程度的关联性。我们还证明,在地面的概率方面,我们还证明完全的概率,在地面的概率学上,在各种的概率上,我们可以确定各种的概率的推比。

0
下载
关闭预览

相关内容

Effective.Modern.C++ 中英文版,334页pdf
专知会员服务
67+阅读 · 2020年11月4日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
综述 | 事件抽取及推理 (上)
开放知识图谱
87+阅读 · 2019年1月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年2月11日
Arxiv
0+阅读 · 2021年2月11日
Arxiv
3+阅读 · 2018年10月11日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关VIP内容
Effective.Modern.C++ 中英文版,334页pdf
专知会员服务
67+阅读 · 2020年11月4日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
综述 | 事件抽取及推理 (上)
开放知识图谱
87+阅读 · 2019年1月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员