The executive branch (the government) is usually not directly elected by the people, but is created by another elected body or person such as the parliament or the president. As a result, its members are not directly accountable to the people, individually or as a group. We propose a scenario where government members are directly elected by the people, and seek to achieve proportional representation in the process. We will present a formal model for the allocation of K offices, each associated with a disjoint set of candidates contesting for that seat. A group of voters provides ballots for each of the offices. Since using simple majority voting for each office independently may result in minority preferences being completely ignored, here we adapt the greedy version of proportional approval voting (GreedyPAV) to our framework. In the article Electing the Executive Branch you can find an in-depth explanation of the model and a demonstration - through computer-based simulations - of how voting for all offices together using this rule overcomes this weakness and upholds the axiom of proportionality. In this article, we will present the implementation of the algorithm (GreedyPAV) proposed by Rutvik Page, Ehud Shapiro, and Nimrod Talmon in the article mentioned above. In addition, we tested our implementation through a survey, the results of which will be presented and analyzed later in the article.


翻译:行政部门(政府)通常不是由人民直接选举产生的,而是由另一个民选机构或个人(如议会或总统)创建的,因此,其成员不直接对人民、个人或团体负责。我们提出政府成员直接选举由人民选举的情景,并力求在这个过程中实现比例代表制。我们将提出一个分配K级职位的正式模式,每个职位都与争夺K级职位的一组不连贯候选人有关,一组选民为每个职位提供选票。由于对每个职位独立地使用简单多数投票可能导致对少数的偏好被完全忽视,因此,我们在此调整了贪婪的按比例批准投票(GreedyPAV)的版本,以适应我们的框架。在选举行政部门的一篇文章中,你可以找到对模式的深入解释,并通过计算机模拟,展示如何利用这一规则共同选举所有职位,维护相称性原则的迫切性。在本篇文章中,我们将介绍Rutvik Page提议的算法(GreedyPAV)的执行情况,我们将在上文提到的Rutvik页、Ehd Shapiro、Eh 和Niroma 的后文执行结果。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员