With the increase in computational power for the available hardware, the demand for high-resolution data in computer graphics applications increases. Consequently, classical geometry processing techniques based on linear algebra solutions are starting to become obsolete. In this setting, we propose a novel approach for tackling mesh deformation tasks on high-resolution meshes. By reducing the input size with a fast remeshing technique and preserving a consistent representation of the original mesh with local reference frames, we provide a solution that is both scalable and robust in multiple applications, such as as-rigid-as-possible deformations, non-rigid isometric transformations, and pose transfer tasks. We extensively test our technique and compare it against state-of-the-art methods, proving that our approach can handle meshes with hundreds of thousands of vertices in tens of seconds while still achieving results comparable with the other solutions.
翻译:暂无翻译