String diagrams constitute an intuitive and expressive graphical syntax that has found application in a very diverse range of fields including concurrency theory, quantum computing, control theory, machine learning, linguistics, and digital circuits. Rewriting theory for string diagrams relies on a combinatorial interpretation as double-pushout rewriting of certain hypergraphs. As previously studied, there is a `tension' in this interpretation: in order to make it sound and complete, we either need to add structure on string diagrams (in particular, Frobenius algebra structure) or pose restrictions on double-pushout rewriting (resulting in `convex' rewriting). From the string diagram viewpoint, imposing a full Frobenius structure may not always be natural or desirable in applications, which motivates our study of a weaker requirement: commutative monoid structure. In this work we characterise string diagram rewriting modulo commutative monoid equations, via a sound and complete interpretation in a suitable notion of double-pushout rewriting of hypergraphs.
翻译: