We study the problem of zeroth-order (black-box) optimization of a Lipschitz function $f$ defined on a compact subset $\mathcal X$ of $\mathbb R^d$, with the additional constraint that algorithms must certify the accuracy of their recommendations. We characterize the optimal number of evaluations of any Lipschitz function $f$ to find and certify an approximate maximizer of $f$ at accuracy $\varepsilon$. Under a weak assumption on $\mathcal X$, this optimal sample complexity is shown to be nearly proportional to the integral $\int_{\mathcal X} \mathrm{d}\boldsymbol x/( \max(f) - f(\boldsymbol x) + \varepsilon )^d$. This result, which was only (and partially) known in dimension $d=1$, solves an open problem dating back to 1991. In terms of techniques, our upper bound relies on a slightly improved analysis of the DOO algorithm that we adapt to the certified setting and then link to the above integral. Our instance-dependent lower bound differs from traditional worst-case lower bounds in the Lipschitz setting and relies on a local worst-case analysis that could likely prove useful for other learning tasks.
翻译:我们研究利普申茨功能零顺序(黑盒)优化问题。根据对美元美元价值的薄弱假设,这种最佳样本复杂性被证明几乎与一个核心子集($\ int ⁇ mathcal X}\ mathr{d ⁇ boldsymbol x/(\max(f) - f(boldsymbol x) +\ varepsilon) ⁇ d$ 。我们将任何利普申茨函数的最佳评价次数定性为fo美元,以寻找和认证以准确值$\varepsilon$为单位的大约最大值为美元。根据对美元价值的薄弱假设,我们最优化的样本复杂性几乎与一个整体的 $\ int ⁇ mathcal X}\ mathrm{d ⁇ boldsysymbol x/(\\\\max(maxf) - f(boldsymball x) - f) - f(boldsymblyxx x) + +\ vareepsildsildalim laft ass betraft laft laft ex betraft affirst rel other view legy legy legal besupplegisl legy lap legy other legy legy 上,我们关于最低的比较低的比较低的、最低的、最接近分析方法,在最接近于最接近于最接近于最低的缩分析。我们的例子的例子。我们的例子,在最低的缩的缩的缩的根据实例的例子可以证明。