Point cloud video has been widely used by augmented reality (AR) and virtual reality (VR) applications as it allows users to have an immersive experience of six degrees of freedom (6DoFs). Yet there is still a lack of research on quality of experience (QoE) model of point cloud video streaming, which cannot provide optimization metric for streaming systems. Besides, position and color information contained in each pixel of point cloud video, and viewport distance effect caused by 6DoFs viewing procedure make the traditional objective quality evaluation metric cannot be directly used in point cloud video streaming system. In this paper we first analyze the subjective and objective factors related to QoE model. Then an experimental system to simulate point cloud video streaming is setup and detailed subjective quality evaluation experiments are carried out. Based on collected mean opinion score (MOS) data, we propose a QoE model for point cloud video streaming. We also verify the model by actual subjective scoring, and the results show that the proposed QoE model can accurately reflect users' visual perception. We also make the experimental database public to promote the QoE research of point cloud video streaming.


翻译:通过扩大现实(AR)和虚拟现实(VR)应用程序,云点视频被广泛使用,因为它使用户能够对六度自由(6DoFs)有初步体验。然而,对点云视频流的经验质量(QoE)模型的研究仍然缺乏,这种模型无法为流流系统提供最佳衡量标准。此外,每个点云视频像素中包含的位置和颜色信息,以及6DoFs查看程序造成的视视像传送距离效应,使得传统的客观质量评估标准无法直接用于点云视频流系统。在本文中,我们首先分析与QoE模型有关的主观和客观因素。随后,我们设置了一个模拟点云视频流的实验系统,并进行了详细的主观质量评估实验试验。根据收集到的平均评分数据,我们提出了点云流视频流的QoE模型。我们还通过实际的主观评分来验证模型,结果显示,拟议的QoE模型能够准确反映用户的视觉认知。我们还将实验数据库公诸于众,以促进点云流视频流的QoE研究。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
48+阅读 · 2021年11月15日
深度学习图像检索(CBIR): 十年之大综述
专知会员服务
46+阅读 · 2020年12月5日
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
Arxiv
0+阅读 · 2022年1月5日
Arxiv
6+阅读 · 2021年11月12日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Two Stream 3D Semantic Scene Completion
Arxiv
4+阅读 · 2018年7月16日
VIP会员
相关VIP内容
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
48+阅读 · 2021年11月15日
深度学习图像检索(CBIR): 十年之大综述
专知会员服务
46+阅读 · 2020年12月5日
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
Top
微信扫码咨询专知VIP会员