The online assignment problem plays an important role in operational research and computer science which is why immense attention has been given to improving its solution quality. Due to the incomplete information about the input, it is difficult for online algorithms to produce the optimal solution. The quality of the solution of an online algorithm is measured using a competitive ratio. No online deterministic algorithm can achieve a competitive ratio better than (2n-1). It has been shown that advice in online computation improves the lower bound of the competitive ratio of online problems. Advice in online computation can be interpreted as additional information for the online algorithm to compensate for the lack of information about the whole input sequence. In this study, we investigate how introducing machine-learned advice could improve the competitive ratio for this problem. We provide an online algorithm for the online assignment problem by simulating a machine learning algorithm that predicts the whole input in advance. We utilize an optimal offline algorithm to provide a matching solution from the predicted input. Furthermore, we investigate how the prediction error of machine learning affects the competitive ratio of the online algorithm. We utilize a benchmark data set to perform our empirical analysis. We show that as the Machine Learning prediction error increases, the solution quality decreases. Moreover, the magnitude of error is directly proportional to the size of the input. This result is analogous to the competitive ratio of the best deterministic algorithm for the online assignment problem which is dependent also on the parameter n.
翻译:在线派任问题在操作研究和计算机科学中起着重要作用,这也是为什么大量关注改进其解决方案质量的原因。由于输入信息不完整,在线算法很难产生最佳解决方案。 在线算法的解决方案质量是通过竞争比率来衡量的。 没有在线确定性算法能够实现比(2n-1)更好的竞争比率。 在线计算建议提高了在线问题竞争性比率的较低约束。 在线计算咨询可以被解释为在线算法的补充信息, 以弥补整个输入序列信息的缺乏。 由于输入序列的信息不完整, 我们调查采用机器吸收的建议如何能改善这一问题的竞争性比率。 我们为在线派任问题提供一个在线算法, 通过模拟机器学习算法,预估整个投入的质量。 我们利用最佳离线算法提供匹配解决方案。 此外, 我们调查机器学习的预测错误如何影响在线算法的竞争性比率。 我们使用基准数据集来进行我们的经验分析。 我们发现,作为机器学习错误的预测错误增加, 机器吸收的咨询建议如何改善在线派任率, 其解决方案的质量下降, 与在线派任参数的比重。