In this paper, we characterize the asymptotic and large scale behavior of the eigenvalues of wavelet random matrices in high dimensions. We assume that possibly non-Gaussian, finite-variance $p$-variate measurements are made of a low-dimensional $r$-variate ($r \ll p$) fractional stochastic process with non-canonical scaling coordinates and in the presence of additive high-dimensional noise. The measurements are correlated both time-wise and between rows. We show that the $r$ largest eigenvalues of the wavelet random matrices, when appropriately rescaled, converge to scale invariant functions in the high-dimensional limit. By contrast, the remaining $p-r$ eigenvalues remain bounded. Under additional assumptions, we show that, up to a log transformation, the $r$ largest eigenvalues of wavelet random matrices exhibit asymptotically Gaussian distributions. The results have direct consequences for statistical inference.
翻译:在本文中,我们描述波浪随机矩阵高维的零星值的零星和大尺度行为。 我们假设,可能非高空的微量随机矩阵值是用一个低维的 $- variate (r /ll p$) 微小的随机过程,该过程带有非天体缩放坐标,并且存在添加式高维噪音。 测量结果既与时间相关,也与行相关。 我们显示,波浪随机矩阵的最大零星值在适当调整规模时,在高维限度内会聚到变异函数。相比之下,其余的 $- r$- eigenvalue 仍然被捆绑着。 在其他假设下,我们显示,直到一个日志变换,波浪随机矩阵展示的最大值值值是无周期高频分布。 其结果对统计推断有直接后果。