Over the past few years, there has been a significant amount of research focused on studying the ReLU activation function, with the aim of achieving neural network convergence through over-parametrization. However, recent developments in the field of Large Language Models (LLMs) have sparked interest in the use of exponential activation functions, specifically in the attention mechanism. Mathematically, we define the neural function $F: \mathbb{R}^{d \times m} \times \mathbb{R}^d \rightarrow \mathbb{R}$ using an exponential activation function. Given a set of data points with labels $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\} \subset \mathbb{R}^d \times \mathbb{R}$ where $n$ denotes the number of the data. Here $F(W(t),x)$ can be expressed as $F(W(t),x) := \sum_{r=1}^m a_r \exp(\langle w_r, x \rangle)$, where $m$ represents the number of neurons, and $w_r(t)$ are weights at time $t$. It's standard in literature that $a_r$ are the fixed weights and it's never changed during the training. We initialize the weights $W(0) \in \mathbb{R}^{d \times m}$ with random Gaussian distributions, such that $w_r(0) \sim \mathcal{N}(0, I_d)$ and initialize $a_r$ from random sign distribution for each $r \in [m]$. Using the gradient descent algorithm, we can find a weight $W(T)$ such that $\| F(W(T), X) - y \|_2 \leq \epsilon$ holds with probability $1-\delta$, where $\epsilon \in (0,0.1)$ and $m = \Omega(n^{2+o(1)}\log(n/\delta))$. To optimize the over-parameterization bound $m$, we employ several tight analysis techniques from previous studies [Song and Yang arXiv 2019, Munteanu, Omlor, Song and Woodruff ICML 2022].


翻译:过去几年中,研究人员一直致力于研究ReLU激活函数,旨在通过超参数化实现神经网络的收敛。然而,最近在大型语言模型(LLMs)领域的发展引发了对指数激活函数的兴趣,特别是在注意力机制中。数学上,我们使用指数激活函数定义神经函数$F: \mathbb{R}^{d \times m} \times \mathbb{R}^d \rightarrow \mathbb{R}$。给定一组带标签的数据点$\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\} \subset \mathbb{R}^d \times \mathbb{R}$,其中 $n$ 表示数据数量。这里$F(W(t),x)$可以表示为$F(W(t),x) := \sum_{r=1}^m a_r \exp(\langle w_r, x \rangle)$,其中$m$表示神经元的数量,$w_r(t)$是时间$t$的权重。在文献中,$a_r$是固定的权重,在训练过程中不会改变。我们使用随机高斯分布初始化权重$W(0) \in \mathbb{R}^{d \times m}$,使得$w_r(0) \sim \mathcal{N}(0, I_d)$,并为每个$r \in [m]$的$a_r$从随机符号分布中初始化。使用梯度下降算法,我们可以找到一个权重$W(T)$,使得概率$1-\delta$下,$\| F(W(T), X) - y \|_2 \leq \epsilon$成立,其中$\epsilon\in(0,0.1)$,$m=\Omega(n^{2+o(1)}\log(n/\delta))$。为了优化超参数化绑定$m$,我们采用了来自之前研究的几种紧密的分析技术[Song and Yang arXiv 2019, Munteanu, Omlor, Song and Woodruff ICML 2022]。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员