We increasingly depend on a variety of data-driven algorithmic systems to assist us in many aspects of life. Search engines and recommender systems amongst others are used as sources of information and to help us in making all sort of decisions from selecting restaurants and books, to choosing friends and careers. This has given rise to important concerns regarding the fairness of such systems. In this work, we aim at presenting a toolkit of definitions, models and methods used for ensuring fairness in rankings and recommendations. Our objectives are three-fold: (a) to provide a solid framework on a novel, quickly evolving, and impactful domain, (b) to present related methods and put them into perspective, and (c) to highlight open challenges and research paths for future work.


翻译:我们日益依赖各种数据驱动的算法系统来协助我们生活的许多方面,搜索引擎和建议系统等被作为信息来源,帮助我们从选择餐馆和书籍到选择朋友和职业作出各种决定,这引起了人们对这种系统是否公平的重要关切,在这项工作中,我们的目标是提出一套用于确保排名和建议公平性的定义、模式和方法,我们的目标有三个方面:(a) 为一个新的、迅速演变的和具有影响力的领域提供一个坚实的框架,(b) 提出相关方法,并把它们纳入视野,(c) 突出未来工作的公开挑战和研究途径。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Preference Discovery in Large Product Lines
Arxiv
0+阅读 · 2021年6月7日
Arxiv
20+阅读 · 2019年11月23日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员