Recently, animal pose estimation is attracting increasing interest from the academia (e.g., wildlife and conservation biology) focusing on animal behavior understanding. However, currently animal pose estimation suffers from small datasets and large data variances, making it difficult to obtain robust performance. To tackle this problem, we propose that the rich knowledge about relations between pose-related semantics learned by language models can be utilized to improve the animal pose estimation. Therefore, in this study, we introduce a novel PromptPose framework to effectively apply language models for better understanding the animal poses based on prompt training. In PromptPose, we propose that adapting the language knowledge to the visual animal poses is key to achieve effective animal pose estimation. To this end, we first introduce textual prompts to build connections between textual semantic descriptions and supporting animal keypoint features. Moreover, we further devise a pixel-level contrastive loss to build dense connections between textual descriptions and local image features, as well as a semantic-level contrastive loss to bridge the gap between global contrasts in language-image cross-modal pre-training and local contrasts in dense prediction. In practice, the PromptPose has shown great benefits for improving animal pose estimation. By conducting extensive experiments, we show that our PromptPose achieves superior performance under both supervised and few-shot settings, outperforming representative methods by a large margin. The source code and models will be made publicly available.


翻译:最近,动物构成估计正在引起学术界(如野生动物和养护生物学)对动物行为理解的日益关注,然而,目前动物构成的估计因小数据集小和数据差异巨大而受到影响,因此难以取得稳健的性能。为了解决这一问题,我们提议,可以利用语言模型所学到的与构成有关的语义关系的丰富知识来改进动物构成估计。因此,在本研究中,我们引入了一个新型的 " 快速快车 " 框架,以有效应用语言模型,以更好地了解基于及时培训的动物构成。在 " 快车 " 中,我们提议,使语言知识适应视觉动物构成是进行有效动物构成估计的关键。为此,我们首先引入了文字提示,以建立文本性语义描述与支持动物关键点特征之间的联系。此外,我们进一步设计了一种像素级对比性损失,以在文字描述与当地图像特征之间建立密切的联系,以及一个语义级对比损失水平对比,以弥合语言-模范前和本地对比之间的差距,以有效动物构成的动物构成为核心预测的关键。在实践中,快速PSIRP展示了我们现有的大规模业绩评估模式,展示了巨大的优势。

1
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月12日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员