3D point cloud interpretation is a challenging task due to the randomness and sparsity of the component points. Many of the recently proposed methods like PointNet and PointCNN have been focusing on learning shape descriptions from point coordinates as point-wise input features, which usually involves complicated network architectures. In this work, we draw attention back to the standard 3D convolutions towards an efficient 3D point cloud interpretation. Instead of converting the entire point cloud into voxel representations like the other volumetric methods, we voxelize the sub-portions of the point cloud only at necessary locations within each convolution layer on-the-fly, using our dynamic voxelization operation with self-adaptive voxelization resolution. In addition, we incorporate 3D group convolution into our dense convolution kernel implementation to further exploit the rotation invariant features of point cloud. Benefiting from its simple fully-convolutional architecture, our network is able to run and converge at a considerably fast speed, while yields on-par or even better performance compared with the state-of-the-art methods on several benchmark datasets.
翻译:3D点云解释是一项具有挑战性的任务,因为组件点的随机性和广度。许多最近提出的方法,如PointNet和PointCNN, 一直侧重于从点坐标学习形状描述,作为点输入特征,通常涉及复杂的网络结构。在这项工作中,我们提醒人们注意标准 3D 点云解释向高效的 3D 点云解释的演变。我们不象其他的体积方法那样将整个点云转换成 voxel 表达方式,而是将点云的分端在每一卷起层的每个必要地点进行排解,使用我们带有自我适应性反氧化分辨率的动态反氧化操作。此外,我们还将3D 组变异纳入我们密集的电动内核实施中,以进一步利用点云的旋转性特征。我们的网络从其简单的全革命性结构中获益,它能够以相当快的速度运行和汇合,同时与几个基准数据集的状态方法相比,产生平行或甚至更好的性能。