This study evaluates the potential of a large language model for aiding in generation of semantic feature norms - a critical tool for evaluating conceptual structure in cognitive science. Building from an existing human-generated dataset, we show that machine-verified norms capture aspects of conceptual structure beyond what is expressed in human norms alone, and better explain human judgments of semantic similarity amongst items that are distally related. The results suggest that LLMs can greatly enhance traditional methods of semantic feature norm verification, with implications for our understanding of conceptual representation in humans and machines.
翻译:本研究评估了大型语言模型在生成语义特征常模中的潜力——这是评估认知科学中概念结构的关键工具。在现有人类生成的数据集的基础上,我们显示机器验证的常模捕获了超出人类常模表达的概念结构方面,并更好地解释了远程相关项之间的语义相似性的人类判断。结果表明,大型语言模型可以极大地增强传统的语义特征常模验证方法,这对我们了解人类和机器的概念表示具有重要意义。